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Martin’s Axioms

Fix a poset P.

Notation
1 dense(P) := {D ⊆ P : D is dense in P}.
2 Let D ⊆ dense(P).

A filter G ⊆ P is (P,D)-generic if G intersects every D ∈ D.

Definition

Let C be a class of posets, κ an infinite cardinal.

MAκ(C) For any P ∈ C and D ∈ [dense(P)]≤κ,
there is some (P,D)-generic filter.

MAℵ0(all) holds, but MAc(Cohen) fails.
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Failures

Definition

Let C be a class of posets, κ an infinite cardinal.

MAκ(C) For any P ∈ C and D ∈ [dense(P)]≤κ,
there is some (P,D)-generic filter.

1 Say that (P,D) fails MA if there is no (P,D)-generic filter.

2 If in addition P ∈ C, say that (P,D) fails MA(C).

Definition

m(C) := min{|D| : ∃P((P,D) fails MA(C))},
i.e., the smallest κ such that MAκ(C) fails.

1 C ⊆ C′ ⇒ m(C′) ≤ m(C).

2 m(all) = ℵ1, so ℵ1 ≤ m(C).

3 m(countable) = m(Cohen) = cov(M).
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Objective

Goal

Preserve failures (P,D) of MA(C) in forcing extensions,
i.e. preservation of m(C) ≤ κ.

Context

Simple strengthenings of ccc, like k-Knaster, precaliber,...

Typical example

A Suslin tree T is a failure of MA(ccc)
(with Dα := {t ∈ T : htT(t) ≥ α} for α < ω1).

Recall:

Any product of a ccc poset with a Knaster poset is ccc.

Hence Knaster posets preserve Suslin trees
→ preserve m(ccc) = ℵ1.
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A formal approach

We look at properties Γ of subsets of posets,
i.e. Γ is a function from the class of posets s.t. Γ(P) ⊆ P.

E.g.

Λn (2 ≤ n < ω): n-linked subsets.
A ∈ Λn(P) iff any F ∈ [A]≤n has a lower bound in P.

Λ<ω =
∧
n<ω Λn: centered subsets.

A ∈ Λ<ω(P) iff any finite F ⊆ A has a lower bound in P.

Definition

Let µ be a cardinal.

1 A poset P is µ-Γ-covered if it can be covered by ≤ µ-many subsets in
Γ(P).

2 A poset P is µ-Γ-Knaster if

∀B ∈ [P]µ∃A ∈ [B]µ(A ∈ Γ(P)).
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Examples

1 µ-Λn-covered (2 ≤ n < ω) ⇔ (µ, n)-linked:
the poset can be covered by at most ≤ µ-many n-linked subsets.

2 θ-Λn-Knaster ⇔ (θ, n)-Knaster.
Knaster ⇔ (ℵ1, 2)-Knaster.

3 µ-Λ<ω-covered ⇔ µ-centered.
σ-centered ⇔ ℵ0-centered.

4 θ-Λ<ω-Knaster ⇔ precaliber θ.

Define Γ0 such that A ∈ Γ0(P) iff either |A| ≤ 1 or A is not an antichain.

P is µ-Γ0-covered iff either |P| ≤ µ or P is not an antichain (in itself).

P is θ-Γ0-Knaster iff it is θ-cc.

µ-Γ-covered implies µ+-Γ-Knaster when Γ is downwards closed.

However, not true in general: Γ0 is a counter-example.
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σ-centered ⇔ ℵ0-centered.

4 θ-Λ<ω-Knaster ⇔ precaliber θ.

Define Γ0 such that A ∈ Γ0(P) iff either |A| ≤ 1 or A is not an antichain.

P is µ-Γ0-covered iff

either |P| ≤ µ or P is not an antichain (in itself).

P is θ-Γ0-Knaster iff it is θ-cc.

µ-Γ-covered implies µ+-Γ-Knaster when Γ is downwards closed.

However, not true in general: Γ0 is a counter-example.
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Bonus track

Let µ and infinite cardinal and θ > ℵ0 regular.

M. 2019

Properties on Γ can be determined so that:

1 Any FS (finite support) product of θ-Γ-Knaster posets is θ-Γ-Knaster.

2 Any FS iteration of θ-Γ-Knaster posets is θ-Γ-Knaster.

Likewise for µ-Γ-covered when the size of the product or iteration is ≤2µ.

Matrix iterations with vertical support restrictions. (Section 5. “Bonus track: linkedness

properties”)

Λn and Λ<ω satisfy both, but Γ0 satisfies only (2).
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Very standard classes

If Γ ⇒ Γ′ then

Any µ-Γ-covered poset is µ-Γ′-covered.
So m(µ-Γ′-cv.) ≤ m(µ-Γ-cv.).

Any θ-Γ-Knaster poset is θ-Γ′-Knaster.
So m(θ-Γ′-Kn.) ≤ m(θ-Γ-Kn.).

Notation
1 n-Knaster means (ℵ1, n)-Knaster for 2 ≤ n < ω.

2 1-Knaster means ccc.

3 ω-Knaster means precaliber ℵ1.

4 mγ := m(γ-Kn.) (1 ≤ γ ≤ ω).

5 σ-n-linked means (ℵ0, n)-linked.
σ-linked means σ-2-linked.
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Diagrams

Γ0 Λ2
oo Λ3

oo · · ·oo Λ<ωoo

σ-2-linked

��

σ-3-linkedoo

��

· · ·oo

��

σ-centered

��

oo

ccc 2-Knasteroo 3-Knasteroo · · ·oo precaliber ℵ1
oo

m(σ-2-lk.) // m(σ-3-lk.) // · · · // p = t = m(σ-ct.)

m1
// m2

//

OO

m3
//

OO

· · · //

OO

mω

OO
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Curious facts

Fact (ess. Kunen, Rowbottom, Solovay)

Assume that C ⊆ ccc is closed under countable FS-products and under
cones (if P ∈ C and p ∈ P then {q ∈ P : q ≤ p} ∈ C).

If m(C) = λ > ℵ1 then
∀P ∈ C∀A ∈ [P]<λ: A is a countable union of sets in Λ<ω(P) (centered
subsets of P).

In particular C ⊆ precaliber ℵ1.

Since m1 > ℵ1 implies that products of ccc posets are ccc:

Corollary

If 1 ≤ k < ω and mk > ℵ1 then mk = mω.

Corollary

|{mγ : 1 ≤ γ ≤ ω}| ≤ 2
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Playground

Theorem (Goldstern & Kellner & M. & Shelah 2021)

For any 1 ≤ k ≤ ω and λ ≥ ℵ1 regular there is a FS iteration forcing
m` = ℵ1 for ` < k, and mk = mω = λ.
In addition we can force λ < p < add(N ), along with Cichoń’s maximum.

We first add many Cohen reals (the value we want for c), followed by
posets that are σ-n-linked for all n < ω (for Cichoń’s maximum, and p),
plust other stuff depending on each case.

(p will be discussed at the end of the talk.)

Note: m(σ-n-lk.) ≤ add(N ) for all 2 ≤ n < ω.
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Forcing mω = ℵ1

Case λ = ℵ1: No more is needed.

Devlin & Shelah 1978

mω > ℵ1 implies that any ladder system coloring can be uniformalized.
I.e. Any ladder system coloring that cannot be uniformalized is a failure of
MA(prec.).

Barnett 1992

After one Cohen real, there is a ladder system coloring that cannot be
uniformalized even in further σ-linked forcing extensions.

Diego A. Mej́ıa (Shizuoka University) Preserving failures of fragments of MA Kobe Set Theory 2021 12 / 24



Forcing mω = ℵ1

Case λ = ℵ1: No more is needed.

Devlin & Shelah 1978

mω > ℵ1 implies that any ladder system coloring can be uniformalized.
I.e. Any ladder system coloring that cannot be uniformalized is a failure of
MA(prec.).

Barnett 1992

After one Cohen real, there is a ladder system coloring that cannot be
uniformalized even in further σ-linked forcing extensions.

Diego A. Mej́ıa (Shizuoka University) Preserving failures of fragments of MA Kobe Set Theory 2021 12 / 24



Strategy 1

Assume from now on that λ > ℵ1.

Case k < ω: In addition, we insert k-Knaster posets of size <λ along the
iteration (to force λ ≤ mk).
We need to ensure

1 mk ≤ λ and

2 mk−1 = ℵ1 (if k > 1).

All iterands are k-Knaster and (λ, n)-Knaster for all n ∈ (k, ω).

So we need to ensure that (λ, k + 1)-Knaster posets preserve mk ≤ λ.

What about mk−1 = ℵ1?: the iteration is (ℵ1, k)-Knaster, so the same
would ensure mk−1 ≤ ℵ1.
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We need to ensure

1 mk ≤ λ and

2 mk−1 = ℵ1 (if k > 1).

All iterands are k-Knaster and (λ, n)-Knaster for all n ∈ (k, ω).

So we need to ensure that (λ, k + 1)-Knaster posets preserve mk ≤ λ.

What about mk−1 = ℵ1?: the iteration is (ℵ1, k)-Knaster, so the same
would ensure mk−1 ≤ ℵ1.
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Quite strong nwd sets

Assume n ≥ 3.

Definition (Todorčević 1980’s)

1 X ⊆ nω is <n-ary, nwd+ in this talk, if

∀s ∈ n<ω∃i < n([ŝ〈i〉] ∩X = ∅)

where [t] := {z ∈ nω : z ⊇ t}.

2 Z ⊆ nω is λ-Luzin+ if |Z| ≥ λ and Z does not contain nwd+ subsets
of size λ.

3 For Z ⊆ nω define the poset QZ whose conditions are functions
p : u→ ω with u ⊆ Z finite s.t. p−1(n) is nwd+ for all n < ω.
The order is ⊇.
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Preserving Luzin+ sets

Assume n ≥ 3, λ ≥ ℵ1 regular.

Lemma (Todorčević 1980’s)

If Z ∈ [nω]λ is λ-Luzin+ then (QZ ,D) fails MA((n− 1)-Kn.) where
D := {Dz : z ∈ Z}, Dz := {q ∈ QZ : z ∈ domq}.

In fact QZ is σ-(n− 1)-linked when λ ≤ c.

Theorem (Todorčević 1980’s)

1 After λ-many Cohen reals there is a λ-Luzin+ subset of nω of size λ.

2 (λ, n)-Knaster posets preserve λ-Luzin+ subsets of nω of size λ.

So, in the previous iteration,

when k ≥ 2 we can guarantee mk ≤ λ (by the Theorem applied to
n = k + 1).

when k ≥ 3 we can guarantee mk−1 ≤ ℵ1 (by the Theorem applied to
n = k and λ = ℵ1).
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1 After λ-many Cohen reals there is a λ-Luzin+ subset of nω of size λ.

2 (λ, n)-Knaster posets preserve λ-Luzin+ subsets of nω of size λ.

So, in the previous iteration,

when k ≥ 2 we can guarantee mk ≤ λ (by the Theorem applied to
n = k + 1).

when k ≥ 3 we can guarantee mk−1 ≤ ℵ1 (by the Theorem applied to
n = k and λ = ℵ1).

Diego A. Mej́ıa (Shizuoka University) Preserving failures of fragments of MA Kobe Set Theory 2021 15 / 24



Preserving Luzin+ sets

Assume n ≥ 3, λ ≥ ℵ1 regular.

Lemma (Todorčević 1980’s)
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1 After λ-many Cohen reals there is a λ-Luzin+ subset of nω of size λ.

2 (λ, n)-Knaster posets preserve λ-Luzin+ subsets of nω of size λ.

So, in the previous iteration,

when k ≥ 2 we can guarantee mk ≤ λ (by the Theorem applied to
n = k + 1).

when k ≥ 3 we can guarantee mk−1 ≤ ℵ1 (by the Theorem applied to
n = k and λ = ℵ1).
Diego A. Mej́ıa (Shizuoka University) Preserving failures of fragments of MA Kobe Set Theory 2021 15 / 24



Lower cases

So the following remains to be checked:

m1 ≤ ℵ1 when k = 2

1 The iteration is 2-Knaster.

2 2-Knaster posets preserve Suslin trees (witnesses of m1 = ℵ1).

3 [Shelah ’84, Velleman ’84, Todorčević 89] There is a Suslin tree
after one Cohen real.

Case k = 1: Since ℵ1 < λ ≤ m1 we have m1 = mω, so it is enough to get
m2 ≤ λ.
This follows from Todorčević’s theorem applied to n = 3.
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after one Cohen real.

Case k = 1: Since ℵ1 < λ ≤ m1 we have m1 = mω, so it is enough to get
m2 ≤ λ.
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High case

We must check the case k = ω, i.e. forcing mω = λ and mn = ℵ1 for all
1 ≤ n < ω.

Naturally, we insert precaliber ℵ1 posets of size <λ along the iteration (to
force λ ≤ mω).

So the iteration is n-Knaster for all n < ω, and (λ, 2)-Knaster.
thus it forces mn ≤ ℵ1 by Todorčević’s theorem.

Challenge

Preserve a failure of precaliber ℵ1 of size λ in (λ, 2)-Knaster extensions.

Diego A. Mej́ıa (Shizuoka University) Preserving failures of fragments of MA Kobe Set Theory 2021 17 / 24



High case

We must check the case k = ω, i.e. forcing mω = λ and mn = ℵ1 for all
1 ≤ n < ω.

Naturally, we insert precaliber ℵ1 posets of size <λ along the iteration (to
force λ ≤ mω).

So the iteration is n-Knaster for all n < ω, and (λ, 2)-Knaster.

thus it forces mn ≤ ℵ1 by Todorčević’s theorem.
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Colorings with many types

Definition (GKMS 2021)

(c, d̄) is a λ-type coloring if it satisfies

1 c : [λ]2 → {0, 1}, d̄ = 〈dα : α < λ〉, dα : [α]<ℵ0 → ω.

2 For any u ∈ [λ]<ℵ0 , |{η < λ : ∀ξ ∈ u(c({ξ, η}) = 1)}| = λ.

3 If A ⊆ [λ]<ℵ0 is a family of pairwise disjoint sets and |A| = λ then
∃u 6= v in A s.t. ∀ξ ∈ u∀η ∈ v(c({ξ, η}) = 0).

4 For any 1-homogeneous (under c) s, t ∈ [α]<ℵ0 , if dα(s) = dα(t)
(same α-type) then s ∪ t is 1-homogeneous.

Define Q(c,d̄) := {u ∈ [λ]<ℵ0 : u is 1-homogeneous}, ordered by ⊇.

(2) ⇒ Q(c,d̄) adds a 1-homogeneous set of size λ.

(3) ⇒ This homogeneous set is not in the ground model.

(4) ⇒ Q(c,d̄) has precaliber ℵ1.
Even precaliber µ for any regular ℵ1 ≤ µ < cf(λ) = λ.
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Main Lemma

Lemma (GKMS 2021)

If (c, d̄) is a λ-type coloring then (Q(c,d),D) is a failure of MA(prec.)
where D = {Dα : α < λ}, Dα := {u ∈ Q(c,d̄) : u * α}.
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Preservation

Theorem (GKMS 2021)

Any (λ, 2)-Knaster poset preserves λ-type colorings.

Proof sketch: All properties are absolute except:

(3) If A ⊆ [λ]<ℵ0 is a family of pairwise disjoint sets and |A| = λ then
∃u 6= v in A s.t. ∀ξ ∈ u∀η ∈ v(c({ξ, η}) = 0)

Assume P is (λ, 2)-Knaster, p ∈ P, p 
“Ȧ = {ȧα : α < λ} is as in (3)”.

Find pα ≤ p and bα ∈ [λ]<ℵ0 such that pα 
 ȧα = bα.

So there is Λ ∈ [λ]λ s.t. {pα : α ∈ Λ} is 2-linked.

This implies that there are some α 6= β ∈ Λ
s.t. ∀ξ ∈ bα∀η ∈ bβ(c({ξ, η}) = 0).

So any q ≤ pα, pβ forces that ȧα = bα and ȧβ = bβ are as desired.
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 ȧα = bα.

So there is Λ ∈ [λ]λ s.t. {pα : α ∈ Λ} is 2-linked.

This implies that there are some α 6= β ∈ Λ
s.t. ∀ξ ∈ bα∀η ∈ bβ(c({ξ, η}) = 0).
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s.t. ∀ξ ∈ bα∀η ∈ bβ(c({ξ, η}) = 0).

So any q ≤ pα, pβ forces that ȧα = bα and ȧβ = bβ are as desired.
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Where is the coloring?

Theorem (GKMS 2021)

For any regular λ > ℵ1 there is some precaliber ℵ1 poset P∗λ of size λ
adding a λ-type coloring.
Even more, P∗λ has precaliber µ for any regular µ ≥ ℵ1.

So P∗λ should be included at the beginning of the iteration.
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About p and ‘the rest’

At this point our iteration separates

1 the mk numbers (in two sections),

2 the left side of Cichoń’s diagram

3 and forces p = b.

After intersecting with models [GKMS 2020] we obtain Cichoń’s
maximum while preserving (1) and forcing mω < p = h = g < add(N ).
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Separating p and h

Lemma (ess. Dow & Shelah)

Let ℵ1 ≤ µ = µ<µ ≤ κ be uncountable regular, P µ-cc forcing µ ≤ p.

1 P ∗ (<µµ)V forces p = µ

2 If P forces µ ≤ p = h = κ then P ∗ (<µµ)V forces h = κ.

Lemma (GKMS 2021)

In the previous lemma:

1 h can be replaced by g.

2 If P forces Cichoń’s maximum then so P ∗ (<µµ)V does.

3 P ∗ (<µµ)V preserves the values of mk forced by P, as long as they
are ≤ µ.
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Many more stuff

ℵ1 m mk mω p

e

add(N )

cov(N )

non(N )

cof(N )

add(M) cov(M)

non(M) cof(M)

b d

h s

g

a r

u

i

c
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