Preserving failures of simple fragments of Martin's axiom

Diego A. Mejía diego.mejia@shizuoka.ac.jp

Shizuoka University

Joint work with Martin Goldstern, Jakob Kellner, and Saharon Shelah

Kobe Set Theory Workshop 2021 on the occasion of Sakaé Fuchino's Retirement

March 11th, 2021

Fix a poset \mathbb{P} .

Fix a poset \mathbb{P} .

Notation

Fix a poset \mathbb{P} .

Notation

- 2 Let $\mathcal{D} \subseteq \operatorname{dense}(\mathbb{P})$. A filter $G \subseteq \mathbb{P}$ is $(\mathbb{P}, \mathcal{D})$ -generic if G intersects every $D \in \mathcal{D}$.

Fix a poset \mathbb{P} .

Notation

- 2 Let $\mathcal{D} \subseteq \operatorname{dense}(\mathbb{P})$. A filter $G \subseteq \mathbb{P}$ is $(\mathbb{P}, \mathcal{D})$ -generic if G intersects every $D \in \mathcal{D}$.

Definition

Let $\mathcal C$ be a class of posets, κ an infinite cardinal.

 $\mathrm{MA}_{\kappa}(\mathcal{C})$ For any $\mathbb{P} \in \mathcal{C}$ and $\mathcal{D} \in [\mathrm{dense}(\mathbb{P})]^{\leq \kappa}$, there is some $(\mathbb{P}, \mathcal{D})$ -generic filter.

Fix a poset \mathbb{P} .

Notation

- **2** Let $\mathcal{D} \subseteq \operatorname{dense}(\mathbb{P})$. A filter $G \subseteq \mathbb{P}$ is $(\mathbb{P}, \mathcal{D})$ -generic if G intersects every $D \in \mathcal{D}$.

Definition

Let $\mathcal C$ be a class of posets, κ an infinite cardinal.

 $\mathrm{MA}_{\kappa}(\mathcal{C})$ For any $\mathbb{P} \in \mathcal{C}$ and $\mathcal{D} \in [\mathrm{dense}(\mathbb{P})]^{\leq \kappa}$, there is some $(\mathbb{P}, \mathcal{D})$ -generic filter.

 $MA_{\aleph_0}(all)$ holds, but $MA_{\mathfrak{c}}(Cohen)$ fails.

Definition

Let $\mathcal C$ be a class of posets, κ an infinite cardinal.

 $\mathrm{MA}_{\kappa}(\mathcal{C})$ For any $\mathbb{P} \in \mathcal{C}$ and $\mathcal{D} \in [\mathrm{dense}(\mathbb{P})]^{\leq \kappa}$, there is some $(\mathbb{P}, \mathcal{D})$ -generic filter.

Definition

Let $\mathcal C$ be a class of posets, κ an infinite cardinal.

 $\mathrm{MA}_{\kappa}(\mathcal{C})$ For any $\mathbb{P} \in \mathcal{C}$ and $\mathcal{D} \in [\mathrm{dense}(\mathbb{P})]^{\leq \kappa}$, there is some $(\mathbb{P}, \mathcal{D})$ -generic filter.

• Say that $(\mathbb{P}, \mathcal{D})$ fails MA if there is no $(\mathbb{P}, \mathcal{D})$ -generic filter.

Definition

Let $\mathcal C$ be a class of posets, κ an infinite cardinal.

 $\mathrm{MA}_{\kappa}(\mathcal{C})$ For any $\mathbb{P} \in \mathcal{C}$ and $\mathcal{D} \in [\mathrm{dense}(\mathbb{P})]^{\leq \kappa}$, there is some (\mathbb{P},\mathcal{D}) -generic filter.

- $\textbf{ $ S$ ay that } (\mathbb{P},\mathcal{D}) \text{ fails } MA \text{ if there is no } (\mathbb{P},\mathcal{D}) \text{-generic filter}.$
- ② If in addition $\mathbb{P} \in \mathcal{C}$, say that $(\mathbb{P}, \mathcal{D})$ fails $MA(\mathcal{C})$.

Definition

Let $\mathcal C$ be a class of posets, κ an infinite cardinal.

```
\mathrm{MA}_{\kappa}(\mathcal{C}) For any \mathbb{P} \in \mathcal{C} and \mathcal{D} \in [\mathrm{dense}(\mathbb{P})]^{\leq \kappa}, there is some (\mathbb{P}, \mathcal{D})-generic filter.
```

- Say that $(\mathbb{P}, \mathcal{D})$ fails MA if there is no $(\mathbb{P}, \mathcal{D})$ -generic filter.
- ② If in addition $\mathbb{P} \in \mathcal{C}$, say that $(\mathbb{P}, \mathcal{D})$ fails $\mathrm{MA}(\mathcal{C})$.

Definition

```
\mathfrak{m}(\mathcal{C}) := \min\{|\mathcal{D}|: \exists \mathbb{P}((\mathbb{P}, \mathcal{D}) \text{ fails } \mathrm{MA}(\mathcal{C}))\}, i.e., the smallest \kappa such that \mathrm{MA}_{\kappa}(\mathcal{C}) fails.
```

Definition

Let $\mathcal C$ be a class of posets, κ an infinite cardinal.

 $\mathrm{MA}_{\kappa}(\mathcal{C})$ For any $\mathbb{P} \in \mathcal{C}$ and $\mathcal{D} \in [\mathrm{dense}(\mathbb{P})]^{\leq \kappa}$, there is some $(\mathbb{P}, \mathcal{D})$ -generic filter.

- Say that $(\mathbb{P}, \mathcal{D})$ fails MA if there is no $(\mathbb{P}, \mathcal{D})$ -generic filter.
- ② If in addition $\mathbb{P} \in \mathcal{C}$, say that $(\mathbb{P}, \mathcal{D})$ fails $\mathrm{MA}(\mathcal{C})$.

Definition

$$\begin{split} \mathfrak{m}(\mathcal{C}) := \min\{|\mathcal{D}|: \ \exists \mathbb{P}((\mathbb{P},\mathcal{D}) \ \text{fails} \ \mathrm{MA}(\mathcal{C}))\}\text{,}\\ \text{i.e., the smallest} \ \kappa \ \text{such that} \ \mathrm{MA}_{\kappa}(\mathcal{C}) \ \text{fails}. \end{split}$$

Definition

Let $\mathcal C$ be a class of posets, κ an infinite cardinal.

```
\mathrm{MA}_{\kappa}(\mathcal{C}) For any \mathbb{P} \in \mathcal{C} and \mathcal{D} \in [\mathrm{dense}(\mathbb{P})]^{\leq \kappa}, there is some (\mathbb{P}, \mathcal{D})-generic filter.
```

- Say that $(\mathbb{P}, \mathcal{D})$ fails MA if there is no $(\mathbb{P}, \mathcal{D})$ -generic filter.
- ② If in addition $\mathbb{P} \in \mathcal{C}$, say that $(\mathbb{P}, \mathcal{D})$ fails $MA(\mathcal{C})$.

Definition

 $\mathfrak{m}(\mathcal{C}) := \min\{|\mathcal{D}|: \exists \mathbb{P}((\mathbb{P}, \mathcal{D}) \text{ fails } \mathrm{MA}(\mathcal{C}))\},$ i.e., the smallest κ such that $\mathrm{MA}_{\kappa}(\mathcal{C})$ fails.

- $\mathfrak{d} \mathfrak{m}(\mathrm{all}) = \aleph_1$, so $\aleph_1 \leq \mathfrak{m}(\mathcal{C})$.

Definition

Let $\mathcal C$ be a class of posets, κ an infinite cardinal.

```
\mathrm{MA}_{\kappa}(\mathcal{C}) For any \mathbb{P} \in \mathcal{C} and \mathcal{D} \in [\mathrm{dense}(\mathbb{P})]^{\leq \kappa}, there is some (\mathbb{P}, \mathcal{D})-generic filter.
```

- Say that $(\mathbb{P}, \mathcal{D})$ fails MA if there is no $(\mathbb{P}, \mathcal{D})$ -generic filter.
- ② If in addition $\mathbb{P} \in \mathcal{C}$, say that $(\mathbb{P}, \mathcal{D})$ fails $MA(\mathcal{C})$.

Definition

 $\mathfrak{m}(\mathcal{C}) := \min\{|\mathcal{D}|: \exists \mathbb{P}((\mathbb{P},\mathcal{D}) \text{ fails } \mathrm{MA}(\mathcal{C}))\},$ i.e., the smallest κ such that $\mathrm{MA}_{\kappa}(\mathcal{C})$ fails.

- $\mathfrak{d} \mathfrak{m}(\mathrm{all}) = \aleph_1$, so $\aleph_1 \leq \mathfrak{m}(\mathcal{C})$.

Goal

Preserve failures $(\mathbb{P}, \mathcal{D})$ of $\mathrm{MA}(\mathcal{C})$ in forcing extensions, i.e. preservation of $\mathfrak{m}(\mathcal{C}) \leq \kappa$.

Goal

Preserve failures (\mathbb{P},\mathcal{D}) of $\mathrm{MA}(\mathcal{C})$ in forcing extensions, i.e. preservation of $\mathfrak{m}(\mathcal{C}) \leq \kappa$.

Context

Simple strengthenings of ccc, like k-Knaster, precaliber,...

Goal

Preserve failures $(\mathbb{P}, \mathcal{D})$ of $\mathrm{MA}(\mathcal{C})$ in forcing extensions, i.e. preservation of $\mathfrak{m}(\mathcal{C}) \leq \kappa$.

Context

Simple strengthenings of ccc, like k-Knaster, precaliber,...

Typical example

A Suslin tree $\mathbb T$ is a failure of $\mathrm{MA}(\mathrm{ccc})$

(with
$$D_{\alpha} := \{t \in \mathbb{T} : \operatorname{ht}_{\mathbb{T}}(t) \geq \alpha\}$$
 for $\alpha < \omega_1$).

Goal

Preserve failures (\mathbb{P},\mathcal{D}) of $\mathrm{MA}(\mathcal{C})$ in forcing extensions, i.e. preservation of $\mathfrak{m}(\mathcal{C}) \leq \kappa$.

Context

Simple strengthenings of ccc, like k-Knaster, precaliber,...

Typical example

A Suslin tree \mathbb{T} is a failure of MA(ccc)

(with
$$D_{\alpha} := \{t \in \mathbb{T} : \operatorname{ht}_{\mathbb{T}}(t) \geq \alpha\}$$
 for $\alpha < \omega_1$).

Recall:

Any product of a ccc poset with a Knaster poset is ccc.

Goal

Preserve failures $(\mathbb{P}, \mathcal{D})$ of $\mathrm{MA}(\mathcal{C})$ in forcing extensions, i.e. preservation of $\mathfrak{m}(\mathcal{C}) \leq \kappa$.

Context

Simple strengthenings of ccc, like k-Knaster, precaliber,...

Typical example

A Suslin tree \mathbb{T} is a failure of MA(ccc)

(with
$$D_{\alpha} := \{ t \in \mathbb{T} : \operatorname{ht}_{\mathbb{T}}(t) \geq \alpha \}$$
 for $\alpha < \omega_1$).

Recall:

Any product of a ccc poset with a Knaster poset is ccc.

Hence Knaster posets preserve Suslin trees

Goal

Preserve failures $(\mathbb{P}, \mathcal{D})$ of $\mathrm{MA}(\mathcal{C})$ in forcing extensions, i.e. preservation of $\mathfrak{m}(\mathcal{C}) \leq \kappa$.

Context

Simple strengthenings of ccc, like k-Knaster, precaliber,...

Typical example

A Suslin tree \mathbb{T} is a failure of MA(ccc)

(with
$$D_{\alpha} := \{ t \in \mathbb{T} : \operatorname{ht}_{\mathbb{T}}(t) \geq \alpha \}$$
 for $\alpha < \omega_1$).

Recall:

Any product of a ccc poset with a Knaster poset is ccc.

Hence Knaster posets preserve Suslin trees

$$\rightarrow$$
 preserve $\mathfrak{m}(ccc) = \aleph_1$.

We look at properties Γ of subsets of posets, i.e. Γ is a function from the class of posets s.t. $\Gamma(\mathbb{P}) \subseteq \mathbb{P}$.

We look at properties Γ of subsets of posets, i.e. Γ is a function from the class of posets s.t. $\Gamma(\mathbb{P}) \subseteq \mathbb{P}$. E.g.

 Λ_n (2 \le n < \omega): n-linked subsets.

We look at properties Γ of subsets of posets, i.e. Γ is a function from the class of posets s.t. $\Gamma(\mathbb{P}) \subseteq \mathbb{P}$. E.g.

 Λ_n $(2 \le n < \omega)$: n-linked subsets. $A \in \Lambda_n(\mathbb{P})$ iff any $F \in [A]^{\le n}$ has a lower bound in \mathbb{P} .

We look at properties Γ of subsets of posets, i.e. Γ is a function from the class of posets s.t. $\Gamma(\mathbb{P}) \subseteq \mathbb{P}$. E.g.

 Λ_n $(2 \le n < \omega)$: n-linked subsets. $A \in \Lambda_n(\mathbb{P})$ iff any $F \in [A]^{\le n}$ has a lower bound in \mathbb{P} .

 $\Lambda_{<\omega} = \bigwedge_{n<\omega} \Lambda_n$: centered subsets.

We look at properties Γ of subsets of posets, i.e. Γ is a function from the class of posets s.t. $\Gamma(\mathbb{P}) \subseteq \mathbb{P}$. E.g.

 $\begin{array}{ll} \Lambda_n \ \ (2 \leq n < \omega) \colon \ n\text{-linked subsets}. \\ A \in \Lambda_n(\mathbb{P}) \ \text{iff any} \ F \in [A]^{\leq n} \ \text{has a lower bound in} \ \mathbb{P}. \end{array}$

 $\begin{array}{ll} \Lambda_{<\omega} &= \bigwedge_{n<\omega} \Lambda_n \text{: centered subsets.} \\ A \in \Lambda_{<\omega}(\mathbb{P}) \text{ iff any finite } F \subseteq A \text{ has a lower bound in } \mathbb{P}. \end{array}$

We look at properties Γ of subsets of posets, i.e. Γ is a function from the class of posets s.t. $\Gamma(\mathbb{P}) \subseteq \mathbb{P}$. E.g.

$$\Lambda_n$$
 $(2 \le n < \omega)$: n -linked subsets. $A \in \Lambda_n(\mathbb{P})$ iff any $F \in [A]^{\le n}$ has a lower bound in \mathbb{P} .

$$\begin{array}{ll} \Lambda_{<\omega} &= \bigwedge_{n<\omega} \Lambda_n \text{: centered subsets.} \\ A \in \Lambda_{<\omega}(\mathbb{P}) \text{ iff any finite } F \subseteq A \text{ has a lower bound in } \mathbb{P}. \end{array}$$

Definition

Let μ be a cardinal.

① A poset $\mathbb P$ is μ - Γ -covered if it can be covered by $\leq \mu$ -many subsets in $\Gamma(\mathbb P)$.

We look at properties Γ of subsets of posets, i.e. Γ is a function from the class of posets s.t. $\Gamma(\mathbb{P}) \subseteq \mathbb{P}$. E.g.

$$\Lambda_n$$
 ($2 \le n < \omega$): n -linked subsets. $A \in \Lambda_n(\mathbb{P})$ iff any $F \in [A]^{\le n}$ has a lower bound in \mathbb{P} .

$$\begin{array}{ll} \Lambda_{<\omega} &= \bigwedge_{n<\omega} \Lambda_n \text{: centered subsets.} \\ A \in \Lambda_{<\omega}(\mathbb{P}) \text{ iff any finite } F \subseteq A \text{ has a lower bound in } \mathbb{P}. \end{array}$$

Definition

Let μ be a cardinal.

- **①** A poset $\mathbb P$ is μ - Γ -covered if it can be covered by $\leq \mu$ -many subsets in $\Gamma(\mathbb P)$.
- **2** A poset \mathbb{P} is μ - Γ -Knaster if

$$\forall B \in [\mathbb{P}]^{\mu} \exists A \in [B]^{\mu} (A \in \Gamma(\mathbb{P})).$$

• μ - Λ_n -covered $(2 \le n < \omega) \Leftrightarrow (\mu, n)$ -linked: the poset can be covered by at most $\le \mu$ -many n-linked subsets.

- μ - Λ_n -covered $(2 \le n < \omega) \Leftrightarrow (\mu, n)$ -linked: the poset can be covered by at most $\le \mu$ -many n-linked subsets.
- θ θ - Λ_n -Knaster \Leftrightarrow (θ, n) -Knaster.

- μ - Λ_n -covered $(2 \le n < \omega) \Leftrightarrow (\mu, n)$ -linked: the poset can be covered by at most $\le \mu$ -many n-linked subsets.
- $\begin{array}{ccc} \textbf{@} & \theta\text{-}\Lambda_n\text{-}\mathsf{Knaster} & \Leftrightarrow & (\theta,n)\text{-}\mathsf{Knaster}. \\ & \mathsf{Knaster} & \Leftrightarrow & (\aleph_1,2)\text{-}\mathsf{Knaster}. \end{array}$

- μ - Λ_n -covered $(2 \le n < \omega) \Leftrightarrow (\mu, n)$ -linked: the poset can be covered by at most $\le \mu$ -many n-linked subsets.
- $\begin{array}{ccc} \textbf{@} & \theta\text{-}\Lambda_n\text{-}\mathsf{Knaster} & \Leftrightarrow & (\theta,n)\text{-}\mathsf{Knaster}. \\ & \mathsf{Knaster} & \Leftrightarrow & (\aleph_1,2)\text{-}\mathsf{Knaster}. \end{array}$
- **1** μ - $\Lambda_{<\omega}$ -covered $\Leftrightarrow \mu$ -centered.

- μ - Λ_n -covered $(2 \le n < \omega) \Leftrightarrow (\mu, n)$ -linked: the poset can be covered by at most $\le \mu$ -many n-linked subsets.
- **2** θ - Λ_n -Knaster \Leftrightarrow (θ, n) -Knaster. Knaster \Leftrightarrow $(\aleph_1, 2)$ -Knaster.
- **③** μ - Λ _{< ω}-covered \Leftrightarrow μ -centered. σ -centered \Leftrightarrow \aleph ₀-centered.

- μ - Λ_n -covered $(2 \le n < \omega) \Leftrightarrow (\mu, n)$ -linked: the poset can be covered by at most $\le \mu$ -many n-linked subsets.
- **2** θ - Λ_n -Knaster \Leftrightarrow (θ, n) -Knaster. Knaster \Leftrightarrow $(\aleph_1, 2)$ -Knaster.

- μ - Λ_n -covered $(2 \le n < \omega) \Leftrightarrow (\mu, n)$ -linked: the poset can be covered by at most $\le \mu$ -many n-linked subsets.
- **2** θ - Λ_n -Knaster \Leftrightarrow (θ, n) -Knaster. Knaster \Leftrightarrow $(\aleph_1, 2)$ -Knaster.

Define Γ_0 such that $A \in \Gamma_0(\mathbb{P})$ iff either $|A| \leq 1$ or A is <u>not</u> an antichain.

- μ - Λ_n -covered $(2 \le n < \omega) \Leftrightarrow (\mu, n)$ -linked: the poset can be covered by at most $\le \mu$ -many n-linked subsets.
- $\theta\text{-}\Lambda_n\text{-}\mathsf{Knaster} \ \Leftrightarrow \ (\theta,n)\text{-}\mathsf{Knaster}.$ $\mathsf{Knaster} \ \Leftrightarrow \ (\aleph_1,2)\text{-}\mathsf{Knaster}.$

Define Γ_0 such that $A \in \Gamma_0(\mathbb{P})$ iff either $|A| \leq 1$ or A is <u>not</u> an antichain.

 \mathbb{P} is μ - Γ_0 -covered iff

- μ - Λ_n -covered $(2 \le n < \omega) \Leftrightarrow (\mu, n)$ -linked: the poset can be covered by at most $\le \mu$ -many n-linked subsets.
- **②** θ - Λ_n -Knaster \Leftrightarrow (θ, n) -Knaster. Knaster \Leftrightarrow $(\aleph_1, 2)$ -Knaster.
- **③** μ - Λ < ω -covered $\Leftrightarrow \mu$ -centered. σ -centered $\Leftrightarrow \aleph$ ₀-centered.
- $\bullet \theta \Lambda_{<\omega}$ -Knaster \Leftrightarrow precaliber θ .

Define Γ_0 such that $A \in \Gamma_0(\mathbb{P})$ iff either $|A| \leq 1$ or A is <u>not</u> an antichain.

 \mathbb{P} is μ - Γ_0 -covered iff either $|\mathbb{P}| \leq \mu$ or \mathbb{P} is <u>not</u> an antichain (in itself).

- μ - Λ_n -covered $(2 \le n < \omega) \Leftrightarrow (\mu, n)$ -linked: the poset can be covered by at most $\le \mu$ -many n-linked subsets.
- **②** θ - Λ_n -Knaster \Leftrightarrow (θ, n) -Knaster. Knaster \Leftrightarrow $(\aleph_1, 2)$ -Knaster.
- **③** μ - Λ < ω -covered $\Leftrightarrow \mu$ -centered. σ -centered $\Leftrightarrow \aleph$ ₀-centered.

Define Γ_0 such that $A \in \Gamma_0(\mathbb{P})$ iff either $|A| \leq 1$ or A is <u>not</u> an antichain.

 \mathbb{P} is μ - Γ_0 -covered iff either $|\mathbb{P}| \leq \mu$ or \mathbb{P} is <u>not</u> an antichain (in itself). \mathbb{P} is θ - Γ_0 -Knaster iff

Examples

- μ - Λ_n -covered $(2 \le n < \omega) \Leftrightarrow (\mu, n)$ -linked: the poset can be covered by at most $\le \mu$ -many n-linked subsets.
- **2** θ - Λ_n -Knaster \Leftrightarrow (θ, n) -Knaster. Knaster \Leftrightarrow $(\aleph_1, 2)$ -Knaster.
- **③** μ - Λ < ω -covered $\Leftrightarrow \mu$ -centered. σ -centered $\Leftrightarrow \aleph$ ₀-centered.

Define Γ_0 such that $A \in \Gamma_0(\mathbb{P})$ iff either $|A| \leq 1$ or A is <u>not</u> an antichain.

 \mathbb{P} is μ - Γ_0 -covered iff either $|\mathbb{P}| \leq \mu$ or \mathbb{P} is <u>not</u> an antichain (in itself). \mathbb{P} is θ - Γ_0 -Knaster iff it is θ -cc.

Examples

- μ - Λ_n -covered $(2 \le n < \omega) \Leftrightarrow (\mu, n)$ -linked: the poset can be covered by at most $\le \mu$ -many n-linked subsets.
- **2** θ - Λ_n -Knaster \Leftrightarrow (θ, n) -Knaster. Knaster \Leftrightarrow $(\aleph_1, 2)$ -Knaster.
- **③** μ - Λ < ω -covered $\Leftrightarrow \mu$ -centered. σ -centered $\Leftrightarrow \aleph$ ₀-centered.

Define Γ_0 such that $A \in \Gamma_0(\mathbb{P})$ iff either $|A| \leq 1$ or A is <u>not</u> an antichain.

 \mathbb{P} is μ - Γ_0 -covered iff either $|\mathbb{P}| \leq \mu$ or \mathbb{P} is <u>not</u> an antichain (in itself). \mathbb{P} is θ - Γ_0 -Knaster iff it is θ -cc.

 μ -Γ-covered implies μ^+ -Γ-Knaster when Γ is downwards closed.

Examples

- μ - Λ_n -covered $(2 \le n < \omega) \Leftrightarrow (\mu, n)$ -linked: the poset can be covered by at most $\le \mu$ -many n-linked subsets.
- **②** θ - Λ_n -Knaster \Leftrightarrow (θ, n) -Knaster. Knaster \Leftrightarrow $(\aleph_1, 2)$ -Knaster.

Define Γ_0 such that $A \in \Gamma_0(\mathbb{P})$ iff either $|A| \leq 1$ or A is <u>not</u> an antichain.

 \mathbb{P} is μ - Γ_0 -covered iff either $|\mathbb{P}| \leq \mu$ or \mathbb{P} is <u>not</u> an antichain (in itself). \mathbb{P} is θ - Γ_0 -Knaster iff it is θ -cc.

 μ -Γ-covered implies μ^+ -Γ-Knaster when Γ is downwards closed.

However, not true in general: Γ_0 is a counter-example.

Let μ and infinite cardinal and $\theta > \aleph_0$ regular.

M. 2019

Properties on Γ can be determined so that:

1 Any FS (finite support) product of θ - Γ -Knaster posets is θ - Γ -Knaster.

Matrix iterations with vertical support restrictions. (Section 5. "Bonus track: linkedness properties")

Let μ and infinite cardinal and $\theta > \aleph_0$ regular.

M. 2019

Properties on Γ can be determined so that:

- **1** Any FS (finite support) product of θ - Γ -Knaster posets is θ - Γ -Knaster.
- **2** Any FS iteration of θ - Γ -Knaster posets is θ - Γ -Knaster.

Matrix iterations with vertical support restrictions. (Section 5. "Bonus track: linkedness properties")

Let μ and infinite cardinal and $\theta > \aleph_0$ regular.

M. 2019

Properties on Γ can be determined so that:

- **1** Any FS (finite support) product of θ - Γ -Knaster posets is θ - Γ -Knaster.
- **2** Any FS iteration of θ - Γ -Knaster posets is θ - Γ -Knaster.

Likewise for μ - Γ -covered when the size of the product or iteration is $\leq 2^{\mu}$.

Matrix iterations with vertical support restrictions. (Section 5. "Bonus track: linkedness properties")

Let μ and infinite cardinal and $\theta > \aleph_0$ regular.

M. 2019

Properties on Γ can be determined so that:

- **1** Any FS (finite support) product of θ - Γ -Knaster posets is θ - Γ -Knaster.
- **2** Any FS iteration of θ - Γ -Knaster posets is θ - Γ -Knaster.

Likewise for μ - Γ -covered when the size of the product or iteration is $\leq 2^{\mu}$.

Matrix iterations with vertical support restrictions. (Section 5. "Bonus track: linkedness properties")

 Λ_n and $\Lambda_{<\omega}$ satisfy both, but Γ_0 satisfies only (2).

If $\Gamma \Rightarrow \Gamma'$ then

• Any μ - Γ -covered poset is μ - Γ' -covered. So $\mathfrak{m}(\mu$ - Γ' -cv.) $\leq \mathfrak{m}(\mu$ - Γ -cv.).

If $\Gamma \Rightarrow \Gamma'$ then

- Any μ - Γ -covered poset is μ - Γ' -covered. So $\mathfrak{m}(\mu$ - Γ' -cv.) $\leq \mathfrak{m}(\mu$ - Γ -cv.).
- Any θ - Γ -Knaster poset is θ - Γ' -Knaster. So $\mathfrak{m}(\theta$ - Γ' -Kn.) $\leq \mathfrak{m}(\theta$ - Γ -Kn.).

If $\Gamma \Rightarrow \Gamma'$ then

- Any μ - Γ -covered poset is μ - Γ' -covered. So $\mathfrak{m}(\mu$ - Γ' -cv.) $\leq \mathfrak{m}(\mu$ - Γ -cv.).
- Any θ - Γ -Knaster poset is θ - Γ' -Knaster. So $\mathfrak{m}(\theta$ - Γ' -Kn.) $\leq \mathfrak{m}(\theta$ - Γ -Kn.).

Notation

1 n-Knaster means (\aleph_1, n) -Knaster for $2 \le n < \omega$.

If $\Gamma \Rightarrow \Gamma'$ then

- Any μ - Γ -covered poset is μ - Γ' -covered. So $\mathfrak{m}(\mu$ - Γ' -cv.) $\leq \mathfrak{m}(\mu$ - Γ -cv.).
- Any θ - Γ -Knaster poset is θ - Γ' -Knaster. So $\mathfrak{m}(\theta$ - Γ' -Kn.) $\leq \mathfrak{m}(\theta$ - Γ -Kn.).

- **1** n-Knaster means (\aleph_1, n) -Knaster for $2 \le n < \omega$.
- 2 1-Knaster means ccc.

If $\Gamma \Rightarrow \Gamma'$ then

- Any μ - Γ -covered poset is μ - Γ' -covered. So $\mathfrak{m}(\mu$ - Γ' -cv.) $\leq \mathfrak{m}(\mu$ - Γ -cv.).
- Any θ - Γ -Knaster poset is θ - Γ' -Knaster. So $\mathfrak{m}(\theta$ - Γ' -Kn.) $\leq \mathfrak{m}(\theta$ - Γ -Kn.).

- **1** n-Knaster means (\aleph_1, n) -Knaster for $2 \le n < \omega$.
- 2 1-Knaster means ccc.
- **3** ω -Knaster means precaliber \aleph_1 .

If $\Gamma \Rightarrow \Gamma'$ then

- Any μ - Γ -covered poset is μ - Γ' -covered. So $\mathfrak{m}(\mu$ - Γ' -cv.) $\leq \mathfrak{m}(\mu$ - Γ -cv.).
- Any θ - Γ -Knaster poset is θ - Γ' -Knaster. So $\mathfrak{m}(\theta$ - Γ' -Kn.) $\leq \mathfrak{m}(\theta$ - Γ -Kn.).

- **1** n-Knaster means (\aleph_1, n) -Knaster for $2 \le n < \omega$.
- 2 1-Knaster means ccc.
- **3** ω -Knaster means precaliber \aleph_1 .

If $\Gamma \Rightarrow \Gamma'$ then

- Any μ - Γ -covered poset is μ - Γ' -covered. So $\mathfrak{m}(\mu$ - Γ' -cv.) $\leq \mathfrak{m}(\mu$ - Γ -cv.).
- Any θ - Γ -Knaster poset is θ - Γ' -Knaster. So $\mathfrak{m}(\theta$ - Γ' -Kn.) $\leq \mathfrak{m}(\theta$ - Γ -Kn.).

- **1** n-Knaster means (\aleph_1, n) -Knaster for $2 \le n < \omega$.
- 2 1-Knaster means ccc.
- **3** ω -Knaster means precaliber \aleph_1 .
- **5** σ -n-linked means (\aleph_0, n) -linked.

If $\Gamma \Rightarrow \Gamma'$ then

- Any μ - Γ -covered poset is μ - Γ' -covered. So $\mathfrak{m}(\mu$ - Γ' - \mathfrak{cv} .)
- Any θ - Γ -Knaster poset is θ - Γ' -Knaster. So $\mathfrak{m}(\theta$ - Γ' -Kn.) $\leq \mathfrak{m}(\theta$ - Γ -Kn.).

- **1** n-Knaster means (\aleph_1, n) -Knaster for $2 \le n < \omega$.
- 2 1-Knaster means ccc.
- **3** ω -Knaster means precaliber \aleph_1 .
- **5** σ -n-linked means (\aleph_0, n) -linked. σ -linked means σ -2-linked.

Diagrams

$$\Gamma_0 \longleftarrow \Lambda_2 \longleftarrow \Lambda_3 \longleftarrow \cdots \longleftarrow \Lambda_{<\omega}$$

4□ > 4□ > 4 = > 4 = > = 90

Fact (ess. Kunen, Rowbottom, Solovay)

Assume that $\mathcal{C} \subseteq \csc$ is closed under countable FS-products and under cones (if $\mathbb{P} \in \mathcal{C}$ and $p \in \mathbb{P}$ then $\{q \in \mathbb{P} : q \leq p\} \in \mathcal{C}$).

Fact (ess. Kunen, Rowbottom, Solovay)

Assume that $\mathcal{C} \subseteq \operatorname{ccc}$ is closed under countable FS-products and under cones (if $\mathbb{P} \in \mathcal{C}$ and $p \in \mathbb{P}$ then $\{q \in \mathbb{P} : q \leq p\} \in \mathcal{C}$).

If $\mathfrak{m}(\mathcal{C}) = \lambda > \aleph_1$ then

 $\forall \mathbb{P} \in \mathcal{C} \forall A \in [\mathbb{P}]^{<\lambda}$: A is a countable union of sets in $\Lambda_{<\omega}(\mathbb{P})$ (centered subsets of \mathbb{P}).

Fact (ess. Kunen, Rowbottom, Solovay)

Assume that $\mathcal{C} \subseteq \operatorname{ccc}$ is closed under countable FS-products and under cones (if $\mathbb{P} \in \mathcal{C}$ and $p \in \mathbb{P}$ then $\{q \in \mathbb{P} : q \leq p\} \in \mathcal{C}$).

If $\mathfrak{m}(\mathcal{C}) = \lambda > \aleph_1$ then

 $\forall \mathbb{P} \in \mathcal{C} \forall A \in [\mathbb{P}]^{<\lambda}$: A is a countable union of sets in $\Lambda_{<\omega}(\mathbb{P})$ (centered subsets of \mathbb{P}).

In particular $C \subseteq \text{precaliber } \aleph_1$.

Fact (ess. Kunen, Rowbottom, Solovay)

Assume that $\mathcal{C} \subseteq \operatorname{ccc}$ is closed under countable FS-products and under cones (if $\mathbb{P} \in \mathcal{C}$ and $p \in \mathbb{P}$ then $\{q \in \mathbb{P} : q \leq p\} \in \mathcal{C}$).

If $\mathfrak{m}(\mathcal{C}) = \lambda > \aleph_1$ then

 $\forall \mathbb{P} \in \mathcal{C} \forall A \in [\mathbb{P}]^{<\lambda}$: A is a countable union of sets in $\Lambda_{<\omega}(\mathbb{P})$ (centered subsets of \mathbb{P}).

In particular $C \subseteq \text{precaliber } \aleph_1$.

Since $\mathfrak{m}_1 > \aleph_1$ implies that products of ccc posets are ccc:

Corollary

If $1 \leq k < \omega$ and $\mathfrak{m}_k > \aleph_1$ then $\mathfrak{m}_k = \mathfrak{m}_\omega$.

Fact (ess. Kunen, Rowbottom, Solovay)

Assume that $\mathcal{C} \subseteq \operatorname{ccc}$ is closed under countable FS-products and under cones (if $\mathbb{P} \in \mathcal{C}$ and $p \in \mathbb{P}$ then $\{q \in \mathbb{P} : q \leq p\} \in \mathcal{C}$).

If $\mathfrak{m}(\mathcal{C}) = \lambda > \aleph_1$ then

 $\forall \mathbb{P} \in \mathcal{C} \forall A \in [\mathbb{P}]^{<\lambda}$: A is a countable union of sets in $\Lambda_{<\omega}(\mathbb{P})$ (centered subsets of \mathbb{P}).

In particular $C \subseteq \text{precaliber } \aleph_1$.

Since $\mathfrak{m}_1 > \aleph_1$ implies that products of ccc posets are ccc:

Corollary

If $1 \leq k < \omega$ and $\mathfrak{m}_k > \aleph_1$ then $\mathfrak{m}_k = \mathfrak{m}_{\omega}$.

Corollary

$$|\{\mathfrak{m}_{\gamma}: 1 \leq \gamma \leq \omega\}| \leq 2$$

Theorem (Goldstern & Kellner & M. & Shelah 2021)

For any $1 \leq k \leq \omega$ and $\lambda \geq \aleph_1$ regular there is a FS iteration forcing $\mathfrak{m}_\ell = \aleph_1$ for $\ell < k$, and $\mathfrak{m}_k = \mathfrak{m}_\omega = \lambda$. In addition we can force $\lambda < \mathfrak{p} < \operatorname{add}(\mathcal{N})$, along with Cichoń's maximum.

Theorem (Goldstern & Kellner & M. & Shelah 2021)

For any $1 \leq k \leq \omega$ and $\lambda \geq \aleph_1$ regular there is a FS iteration forcing $\mathfrak{m}_\ell = \aleph_1$ for $\ell < k$, and $\mathfrak{m}_k = \mathfrak{m}_\omega = \lambda$. In addition we can force $\lambda < \mathfrak{p} < \operatorname{add}(\mathcal{N})$, along with Cichoń's maximum.

We first add many Cohen reals (the value we want for $\mathfrak c$), followed by posets that are σ -n-linked for all $n<\omega$ (for Cichoń's maximum, and $\mathfrak p$), plust other stuff depending on each case.

Theorem (Goldstern & Kellner & M. & Shelah 2021)

For any $1 \leq k \leq \omega$ and $\lambda \geq \aleph_1$ regular there is a FS iteration forcing $\mathfrak{m}_\ell = \aleph_1$ for $\ell < k$, and $\mathfrak{m}_k = \mathfrak{m}_\omega = \lambda$. In addition we can force $\lambda < \mathfrak{p} < \operatorname{add}(\mathcal{N})$, along with Cichoń's maximum.

We first add many Cohen reals (the value we want for $\mathfrak c$), followed by posets that are σ -n-linked for all $n<\omega$ (for Cichoń's maximum, and $\mathfrak p$), plust other stuff depending on each case.

(p will be discussed at the end of the talk.)

Theorem (Goldstern & Kellner & M. & Shelah 2021)

For any $1 \leq k \leq \omega$ and $\lambda \geq \aleph_1$ regular there is a FS iteration forcing $\mathfrak{m}_\ell = \aleph_1$ for $\ell < k$, and $\mathfrak{m}_k = \mathfrak{m}_\omega = \lambda$. In addition we can force $\lambda < \mathfrak{p} < \operatorname{add}(\mathcal{N})$, along with Cichoń's maximum.

We first add many Cohen reals (the value we want for $\mathfrak c$), followed by posets that are σ -n-linked for all $n<\omega$ (for Cichoń's maximum, and $\mathfrak p$), plust other stuff depending on each case.

(p will be discussed at the end of the talk.)

Note: $\mathfrak{m}(\sigma$ -n-lk.) $\leq \operatorname{add}(\mathcal{N})$ for all $2 \leq n < \omega$.

Forcing $\mathfrak{m}_{\omega} = \aleph_1$

Case $\lambda = \aleph_1$: No more is needed.

Devlin & Shelah 1978

 $\mathfrak{m}_{\omega} > \aleph_1$ implies that any ladder system coloring can be uniformalized. I.e. Any ladder system coloring that cannot be uniformalized is a failure of $\mathrm{MA}(\mathsf{prec.})$.

Forcing $\mathfrak{m}_{\omega} = \aleph_1$

Case $\lambda = \aleph_1$: No more is needed.

Devlin & Shelah 1978

 $\mathfrak{m}_{\omega} > \aleph_1$ implies that any ladder system coloring can be uniformalized. I.e. Any ladder system coloring that cannot be uniformalized is a failure of $\mathrm{MA}(\mathsf{prec.})$.

Barnett 1992

After one Cohen real, there is a ladder system coloring that cannot be uniformalized even in further σ -linked forcing extensions.

Assume from now on that $\lambda > \aleph_1$.

Assume from now on that $\lambda > \aleph_1$.

<u>Case $k < \omega$ </u>: In addition, we insert k-Knaster posets of size $<\lambda$ along the iteration (to force $\lambda \leq \mathfrak{m}_k$).

Assume from now on that $\lambda > \aleph_1$.

<u>Case $k < \omega$ </u>: In addition, we insert k-Knaster posets of size $<\lambda$ along the iteration (to force $\lambda \leq \mathfrak{m}_k$).

We need to ensure

- lacktriangledown $\mathfrak{m}_k \leq \lambda$ and
- $\mathfrak{m}_{k-1} = \aleph_1 \text{ (if } k > 1).$

Assume from now on that $\lambda > \aleph_1$.

<u>Case $k < \omega$ </u>: In addition, we insert k-Knaster posets of size $<\lambda$ along the iteration (to force $\lambda \leq \mathfrak{m}_k$).

We need to ensure

- lacktriangledown $\mathfrak{m}_k \leq \lambda$ and
- $\mathfrak{d} \mathfrak{m}_{k-1} = \aleph_1 \text{ (if } k > 1).$

All iterands are k-Knaster and (λ, n) -Knaster for all $n \in (k, \omega)$.

Assume from now on that $\lambda > \aleph_1$.

<u>Case $k < \omega$ </u>: In addition, we insert k-Knaster posets of size $<\lambda$ along the iteration (to force $\lambda \leq \mathfrak{m}_k$).

We need to ensure

- $m{0}$ $\mathfrak{m}_k \leq \lambda$ and
- **2** $\mathfrak{m}_{k-1} = \aleph_1$ (if k > 1).

All iterands are k-Knaster and (λ, n) -Knaster for all $n \in (k, \omega)$.

So we need to ensure that $(\lambda, k+1)$ -Knaster posets preserve $\mathfrak{m}_k \leq \lambda$.

Assume from now on that $\lambda > \aleph_1$.

<u>Case $k < \omega$ </u>: In addition, we insert k-Knaster posets of size $<\lambda$ along the iteration (to force $\lambda \leq \mathfrak{m}_k$).

We need to ensure

- lacktriangledown $\mathfrak{m}_k \leq \lambda$ and
- **2** $\mathfrak{m}_{k-1} = \aleph_1$ (if k > 1).

All iterands are k-Knaster and (λ, n) -Knaster for all $n \in (k, \omega)$.

So we need to ensure that $(\lambda, k+1)$ -Knaster posets preserve $\mathfrak{m}_k \leq \lambda$.

What about $\mathfrak{m}_{k-1} = \aleph_1$?: the iteration is (\aleph_1, k) -Knaster, so the same would ensure $\mathfrak{m}_{k-1} \leq \aleph_1$.

Quite strong nwd sets

Assume $n \ge 3$.

Definition (Todorčević 1980's)

1 $X \subseteq n^{\omega}$ is < n-ary, $\underline{\text{nwd}}^+$ in this talk, if

$$\forall s \in n^{<\omega} \exists i < n([s^{\hat{}}\langle i \rangle] \cap X = \emptyset)$$

where $[t] := \{z \in n^{\omega} : z \supseteq t\}.$

Quite strong nwd sets

Assume $n \geq 3$.

Definition (Todorčević 1980's)

1 $X \subseteq n^{\omega}$ is < n-ary, $\underline{\text{nwd}}^+$ in this talk, if

$$\forall s \in n^{<\omega} \exists i < n([s^{\hat{}}\langle i \rangle] \cap X = \emptyset)$$

where
$$[t] := \{z \in n^{\omega} : z \supseteq t\}.$$

② $Z \subseteq n^{\omega}$ is λ -Luzin⁺ if $|Z| \ge \lambda$ and Z does not contain nwd^+ subsets of size λ .

Quite strong nwd sets

Assume $n \ge 3$.

Definition (Todorčević 1980's)

1 $X \subseteq n^{\omega}$ is < n-ary, $\underline{\text{nwd}}^+$ in this talk, if

$$\forall s \in n^{<\omega} \exists i < n([s^{\hat{}}\langle i \rangle] \cap X = \emptyset)$$

where $[t] := \{z \in n^{\omega} : z \supseteq t\}.$

- ② $Z \subseteq n^{\omega}$ is λ -Luzin⁺ if $|Z| \ge \lambda$ and Z does not contain nwd^+ subsets of size λ .
- For Z ⊆ n^ω define the poset Q_Z whose conditions are functions $p: u \to ω$ with $u \subseteq Z$ finite s.t. $p^{-1}(n)$ is nwd^+ for all n < ω. The order is ⊇.

Assume $n \geq 3$, $\lambda \geq \aleph_1$ regular.

Lemma (Todorčević 1980's)

If $Z \in [n^{\omega}]^{\lambda}$ is λ -Luzin⁺ then $(\mathbb{Q}_Z, \mathcal{D})$ fails $\operatorname{MA}((n-1)$ -Kn.) where $\mathcal{D} := \{D_z : z \in Z\}, \ D_z := \{q \in \mathbb{Q}_Z : z \in \operatorname{dom} q\}.$

Assume $n \geq 3$, $\lambda \geq \aleph_1$ regular.

Lemma (Todorčević 1980's)

If $Z \in [n^{\omega}]^{\lambda}$ is λ -Luzin⁺ then $(\mathbb{Q}_Z, \mathcal{D})$ fails $\mathrm{MA}((n-1)$ -Kn.) where

 $\mathcal{D} := \{ D_z : z \in Z \}, \ D_z := \{ q \in \mathbb{Q}_Z : z \in \text{dom} q \}.$

In fact \mathbb{Q}_Z is σ -(n-1)-linked when $\lambda \leq \mathfrak{c}$.

Assume $n \geq 3$, $\lambda \geq \aleph_1$ regular.

Lemma (Todorčević 1980's)

If $Z \in [n^{\omega}]^{\lambda}$ is λ -Luzin⁺ then $(\mathbb{Q}_Z, \mathcal{D})$ fails $\mathrm{MA}((n-1)$ -Kn.) where

 $\mathcal{D} := \{ D_z : z \in Z \}, \ D_z := \{ q \in \mathbb{Q}_Z : z \in \text{dom} q \}.$

In fact \mathbb{Q}_Z is σ -(n-1)-linked when $\lambda \leq \mathfrak{c}$.

Theorem (Todorčević 1980's)

1 After λ -many Cohen reals there is a λ -Luzin⁺ subset of n^{ω} of size λ .

Assume $n \geq 3$, $\lambda \geq \aleph_1$ regular.

Lemma (Todorčević 1980's)

If $Z \in [n^{\omega}]^{\lambda}$ is λ -Luzin⁺ then $(\mathbb{Q}_{Z}, \mathcal{D})$ fails $\operatorname{MA}((n-1)$ -Kn.) where $\mathcal{D} := \{D_{z} : z \in Z\}, \ D_{z} := \{q \in \mathbb{Q}_{Z} : z \in \operatorname{dom} q\}.$ In fact \mathbb{Q}_{Z} is σ -(n-1)-linked when $\lambda < \mathfrak{c}$.

Theorem (Todorčević 1980's)

- **①** After λ -many Cohen reals there is a λ -Luzin⁺ subset of n^{ω} of size λ .
- **2** (λ, n) -Knaster posets preserve λ -Luzin⁺ subsets of n^{ω} of size λ .

Assume $n \geq 3$, $\lambda \geq \aleph_1$ regular.

Lemma (Todorčević 1980's)

If $Z \in [n^{\omega}]^{\lambda}$ is λ -Luzin⁺ then $(\mathbb{Q}_{Z}, \mathcal{D})$ fails $\operatorname{MA}((n-1)$ -Kn.) where $\mathcal{D} := \{D_{z} : z \in Z\}, \ D_{z} := \{q \in \mathbb{Q}_{Z} : z \in \operatorname{dom} q\}.$ In fact \mathbb{Q}_{Z} is σ -(n-1)-linked when $\lambda < \mathfrak{c}$.

Theorem (Todorčević 1980's)

- **①** After λ -many Cohen reals there is a λ -Luzin⁺ subset of n^{ω} of size λ .
- ② (λ, n) -Knaster posets preserve λ -Luzin⁺ subsets of n^{ω} of size λ .

So, in the previous iteration,

when $k \geq 2$ we can guarantee $\mathfrak{m}_k \leq \lambda$ (by the Theorem applied to n=k+1).

Assume $n \geq 3$, $\lambda \geq \aleph_1$ regular.

Lemma (Todorčević 1980's)

If $Z \in [n^{\omega}]^{\lambda}$ is λ -Luzin⁺ then $(\mathbb{Q}_Z, \mathcal{D})$ fails $\operatorname{MA}((n-1)$ -Kn.) where $\mathcal{D} := \{D_z : z \in Z\}, \ D_z := \{q \in \mathbb{Q}_Z : z \in \operatorname{dom} q\}.$ In fact \mathbb{Q}_Z is σ -(n-1)-linked when $\lambda < \mathfrak{c}$.

Theorem (Todorčević 1980's)

- **①** After λ -many Cohen reals there is a λ -Luzin⁺ subset of n^{ω} of size λ .
- **②** (λ, n) -Knaster posets preserve λ -Luzin⁺ subsets of n^{ω} of size λ .

So, in the previous iteration,

when $k \geq 2$ we can guarantee $\mathfrak{m}_k \leq \lambda$ (by the Theorem applied to n=k+1).

when $k \geq 3$ we can guarantee $\mathfrak{m}_{k-1} \leq \aleph_1$ (by the Theorem applied to n = k and $\lambda = \aleph_1$).

Lower cases

So the following remains to be checked:

$$\mathfrak{m}_1 \leq \aleph_1$$
 when $k=2$

Lower cases

So the following remains to be checked:

 $\mathfrak{m}_1 \leq \aleph_1$ when k=2

- The iteration is 2-Knaster.
- ② 2-Knaster posets preserve Suslin trees (witnesses of $\mathfrak{m}_1=leph_1$).
- **Shelah '84, Velleman '84, Todorčević 89]** There is a Suslin tree after one Cohen real.

Lower cases

So the following remains to be checked:

 $\mathfrak{m}_1 \leq \aleph_1$ when k=2

- The iteration is 2-Knaster.
- **2** 2-Knaster posets preserve Suslin trees (witnesses of $\mathfrak{m}_1 = \aleph_1$).
- [Shelah '84, Velleman '84, Todorčević 89] There is a Suslin tree after one Cohen real.

<u>Case k=1</u>: Since $\aleph_1 < \lambda \leq \mathfrak{m}_1$ we have $\mathfrak{m}_1 = \mathfrak{m}_{\omega}$, so it is enough to get $\mathfrak{m}_2 \leq \lambda$.

This follows from Todorčević's theorem applied to n=3.

We must check the case $k=\omega$, i.e. forcing $\mathfrak{m}_{\omega}=\lambda$ and $\mathfrak{m}_n=\aleph_1$ for all $1\leq n<\omega$.

We must check the case $k=\omega$, i.e. forcing $\mathfrak{m}_{\omega}=\lambda$ and $\mathfrak{m}_n=\aleph_1$ for all $1\leq n<\omega$.

Naturally, we insert precaliber \aleph_1 posets of size $<\lambda$ along the iteration (to force $\lambda \leq \mathfrak{m}_{\omega}$).

So the iteration is n-Knaster for all $n < \omega$, and $(\lambda, 2)$ -Knaster.

We must check the case $k=\omega$, i.e. forcing $\mathfrak{m}_{\omega}=\lambda$ and $\mathfrak{m}_n=\aleph_1$ for all $1\leq n<\omega$.

Naturally, we insert precaliber \aleph_1 posets of size $<\lambda$ along the iteration (to force $\lambda \leq \mathfrak{m}_{\omega}$).

So the iteration is n-Knaster for all $n < \omega$, and $(\lambda, 2)$ -Knaster. thus it forces $\mathfrak{m}_n \leq \aleph_1$ by Todorčević's theorem.

We must check the case $k=\omega$, i.e. forcing $\mathfrak{m}_{\omega}=\lambda$ and $\mathfrak{m}_n=\aleph_1$ for all $1\leq n<\omega$.

Naturally, we insert precaliber \aleph_1 posets of size $<\lambda$ along the iteration (to force $\lambda \leq \mathfrak{m}_{\omega}$).

So the iteration is n-Knaster for all $n < \omega$, and $(\lambda, 2)$ -Knaster. thus it forces $\mathfrak{m}_n \leq \aleph_1$ by Todorčević's theorem.

Challenge

Preserve a failure of precaliber \aleph_1 of size λ in $(\lambda, 2)$ -Knaster extensions.

Definition (GKMS 2021)

 (c, \bar{d}) is a λ -type coloring if it satisfies

Define $\mathbb{Q}_{(c,\bar{d})}:=\{u\in[\lambda]^{<\aleph_0}: \text{u is 1-homogeneous}\}$, ordered by \supseteq .

Definition (GKMS 2021)

 (c, \bar{d}) is a λ -type coloring if it satisfies

- $\textbf{ @ For any } u \in [\lambda]^{<\aleph_0} \text{, } |\{\eta < \lambda: \, \forall \xi \in u(c(\{\xi,\eta\})=1)\}| = \lambda.$

Define $\mathbb{Q}_{(c,\bar{d})}:=\{u\in[\lambda]^{<\aleph_0}: \text{u is 1-homogeneous}\}$, ordered by \supseteq .

(2) $\Rightarrow \mathbb{Q}_{(c,\bar{d})}$ adds a 1-homogeneous set of size λ .

Definition (GKMS 2021)

 (c, \bar{d}) is a λ -type coloring if it satisfies

- $\textbf{ § For any } u \in [\lambda]^{<\aleph_0} \text{, } |\{\eta < \lambda: \, \forall \xi \in u(c(\{\xi,\eta\})=1)\}| = \lambda.$
- $\textbf{ If } A \subseteq [\lambda]^{<\aleph_0} \text{ is a family of pairwise disjoint sets and } |A| = \lambda \text{ then } \\ \frac{\exists u \neq v \text{ in } A \text{ s.t. } \forall \xi \in u \forall \eta \in v(c(\{\xi,\eta\}) = 0). }$

Define $\mathbb{Q}_{(c,\bar{d})}:=\{u\in[\lambda]^{<\aleph_0}: \text{u is 1-homogeneous}\}$, ordered by \supseteq .

- (2) $\Rightarrow \mathbb{Q}_{(c,\bar{d})}$ adds a 1-homogeneous set of size λ .
- $(3) \Rightarrow$ This homogeneous set is not in the ground model.

Definition (GKMS 2021)

 (c, \bar{d}) is a λ -type coloring if it satisfies

- $\textbf{ 2 For any } u \in [\lambda]^{<\aleph_0} \text{, } |\{\eta < \lambda: \, \forall \xi \in u(c(\{\xi,\eta\})=1)\}| = \lambda.$
- $\textbf{ If } A \subseteq [\lambda]^{<\aleph_0} \text{ is a family of pairwise disjoint sets and } |A| = \lambda \text{ then } \\ \exists u \neq v \text{ in } A \text{ s.t. } \forall \xi \in u \forall \eta \in v(c(\{\xi,\eta\}) = 0).$
- $\bullet \ \, \text{For any 1-homogeneous (under c) $s,t\in[\alpha]^{<\aleph_0}$, if $d_\alpha(s)=d_\alpha(t)$ (same α-type) then $s\cup t$ is 1-homogeneous.}$

Define $\mathbb{Q}_{(c,\bar{d})}:=\{u\in[\lambda]^{<\aleph_0}: \text{u is 1-homogeneous}\}$, ordered by \supseteq .

- (2) $\Rightarrow \mathbb{Q}_{(c,\bar{d})}$ adds a 1-homogeneous set of size λ .
- $(3) \Rightarrow$ This homogeneous set is not in the ground model.
- $(4) \Rightarrow \mathbb{Q}_{(c,\bar{d})}$ has precaliber \aleph_1 .

Even precaliber μ for any regular $\aleph_1 \leq \mu < \mathrm{cf}(\lambda) = \lambda$.

Main Lemma

Lemma (GKMS 2021)

If (c, \bar{d}) is a λ -type coloring then $(\mathbb{Q}_{(c,d)}, \mathcal{D})$ is a failure of $\mathrm{MA}(\mathsf{prec.})$ where $\mathcal{D} = \{D_\alpha : \ \alpha < \lambda\}, \ D_\alpha := \{u \in \mathbb{Q}_{(c,\bar{d})} : \ u \nsubseteq \alpha\}.$

Theorem (GKMS 2021)

Any $(\lambda,2)$ -Knaster poset preserves λ -type colorings.

Theorem (GKMS 2021)

Any $(\lambda, 2)$ -Knaster poset preserves λ -type colorings.

Proof sketch: All properties are absolute except:

(3) If $A \subseteq [\lambda]^{<\aleph_0}$ is a family of pairwise disjoint sets and $|A| = \lambda$ then

Theorem (GKMS 2021)

Any $(\lambda, 2)$ -Knaster poset preserves λ -type colorings.

Proof sketch: All properties are absolute except:

(3) If $A\subseteq [\lambda]^{<\aleph_0}$ is a family of pairwise disjoint sets and $|A|=\lambda$ then $\exists u\neq v$ in A s.t. $\forall \xi\in u \forall \eta\in v(c(\{\xi,\eta\})=0)$

Assume $\mathbb P$ is $(\lambda,2)$ -Knaster, $p\in\mathbb P$, $p\Vdash$ " $\dot A=\{\dot a_\alpha:\,\alpha<\lambda\}$ is as in (3)".

Theorem (GKMS 2021)

Any $(\lambda,2)$ -Knaster poset preserves λ -type colorings.

Proof sketch: All properties are absolute except:

(3) If $A\subseteq [\lambda]^{<\aleph_0}$ is a family of pairwise disjoint sets and $|A|=\lambda$ then $\exists u\neq v \text{ in } A \text{ s.t. } \forall \xi\in u \forall \eta\in v(c(\{\xi,\eta\})=0)$

Assume $\mathbb P$ is $(\lambda,2)$ -Knaster, $p\in\mathbb P$, $p\Vdash$ " $\dot A=\{\dot a_\alpha:\alpha<\lambda\}$ is as in (3)".

Find $p_{\alpha} \leq p$ and $b_{\alpha} \in [\lambda]^{<\aleph_0}$ such that $p_{\alpha} \Vdash \dot{a}_{\alpha} = b_{\alpha}$.

Theorem (GKMS 2021)

Any $(\lambda, 2)$ -Knaster poset preserves λ -type colorings.

Proof sketch: All properties are absolute except:

(3) If $A\subseteq [\lambda]^{<\aleph_0}$ is a family of pairwise disjoint sets and $|A|=\lambda$ then $\exists u\neq v \text{ in } A \text{ s.t. } \forall \xi\in u \forall \eta\in v(c(\{\xi,\eta\})=0)$

Assume $\mathbb P$ is $(\lambda,2)$ -Knaster, $p\in\mathbb P$, $p\Vdash$ " $\dot A=\{\dot a_\alpha:\,\alpha<\lambda\}$ is as in (3)".

Find $p_{\alpha} \leq p$ and $b_{\alpha} \in [\lambda]^{\leq \aleph_0}$ such that $p_{\alpha} \Vdash \dot{a}_{\alpha} = b_{\alpha}$.

So there is $\Lambda \in [\lambda]^{\lambda}$ s.t. $\{p_{\alpha}: \alpha \in \Lambda\}$ is 2-linked.

Theorem (GKMS 2021)

Any $(\lambda, 2)$ -Knaster poset preserves λ -type colorings.

Proof sketch: All properties are absolute except:

(3) If $A\subseteq [\lambda]^{<\aleph_0}$ is a family of pairwise disjoint sets and $|A|=\lambda$ then $\exists u\neq v \text{ in } A \text{ s.t. } \forall \xi\in u \forall \eta\in v(c(\{\xi,\eta\})=0)$

Assume $\mathbb P$ is $(\lambda,2)$ -Knaster, $p\in\mathbb P$, $p\Vdash$ " $\dot A=\{\dot a_\alpha:\,\alpha<\lambda\}$ is as in (3)".

Find $p_{\alpha} \leq p$ and $b_{\alpha} \in [\lambda]^{<\aleph_0}$ such that $p_{\alpha} \Vdash \dot{a}_{\alpha} = b_{\alpha}$.

So there is $\Lambda \in [\lambda]^{\lambda}$ s.t. $\{p_{\alpha}: \alpha \in \Lambda\}$ is 2-linked.

This implies that there are some $\alpha \neq \beta \in \Lambda$ s.t. $\forall \xi \in b_{\alpha} \forall \eta \in b_{\beta}(c(\{\xi, \eta\}) = 0)$.

Theorem (GKMS 2021)

Any $(\lambda, 2)$ -Knaster poset preserves λ -type colorings.

Proof sketch: All properties are absolute except:

(3) If $A\subseteq [\lambda]^{<\aleph_0}$ is a family of pairwise disjoint sets and $|A|=\lambda$ then $\exists u\neq v \text{ in } A \text{ s.t. } \forall \xi\in u \forall \eta\in v(c(\{\xi,\eta\})=0)$

Assume $\mathbb P$ is $(\lambda,2)$ -Knaster, $p\in\mathbb P$, $p\Vdash$ " $\dot A=\{\dot a_\alpha:\,\alpha<\lambda\}$ is as in (3)".

Find $p_{\alpha} \leq p$ and $b_{\alpha} \in [\lambda]^{<\aleph_0}$ such that $p_{\alpha} \Vdash \dot{a}_{\alpha} = b_{\alpha}$.

So there is $\Lambda \in [\lambda]^{\lambda}$ s.t. $\{p_{\alpha} : \alpha \in \Lambda\}$ is 2-linked.

This implies that there are some $\alpha \neq \beta \in \Lambda$

s.t. $\forall \xi \in b_{\alpha} \forall \eta \in b_{\beta}(c(\{\xi, \eta\}) = 0).$

So any $q \leq p_{\alpha}, p_{\beta}$ forces that $\dot{a}_{\alpha} = b_{\alpha}$ and $\dot{a}_{\beta} = b_{\beta}$ are as desired.

Where is the coloring?

Theorem (GKMS 2021)

For any regular $\lambda > \aleph_1$ there is some precaliber \aleph_1 poset \mathbb{P}^*_{λ} of size λ adding a λ -type coloring.

Even more, \mathbb{P}^*_{λ} has precaliber μ for any regular $\mu \geq \aleph_1$.

Where is the coloring?

Theorem (GKMS 2021)

For any regular $\lambda > \aleph_1$ there is some precaliber \aleph_1 poset \mathbb{P}^*_{λ} of size λ adding a λ -type coloring.

Even more, \mathbb{P}^*_{λ} has precaliber μ for any regular $\mu \geq \aleph_1$.

So \mathbb{P}^*_{λ} should be included at the beginning of the iteration.

About p and 'the rest'

At this point our iteration separates

- the \mathfrak{m}_k numbers (in two sections),
- the left side of Cichoń's diagram
- $oldsymbol{0}$ and forces $\mathfrak{p}=\mathfrak{b}$.

About p and 'the rest'

At this point our iteration separates

- the \mathfrak{m}_k numbers (in two sections),
- 2 the left side of Cichoń's diagram
- **3** and forces $\mathfrak{p} = \mathfrak{b}$.

After intersecting with models **[GKMS 2020]** we obtain Cichoń's maximum while preserving (1) and forcing $\mathfrak{m}_{\omega} < \mathfrak{p} = \mathfrak{h} = \mathfrak{g} < \operatorname{add}(\mathcal{N})$.

Separating \mathfrak{p} and \mathfrak{h}

Lemma (ess. Dow & Shelah)

Let $\aleph_1 \leq \mu = \mu^{<\mu} \leq \kappa$ be uncountable regular, \mathbb{P} μ -cc forcing $\mu \leq \mathfrak{p}$.

- $\bullet \ \mathbb{P} * (^{<\mu}\mu)^V \text{ forces } \mathfrak{p} = \mu$

Separating p and h

Lemma (ess. Dow & Shelah)

Let $\aleph_1 \leq \mu = \mu^{<\mu} \leq \kappa$ be uncountable regular, \mathbb{P} μ -cc forcing $\mu \leq \mathfrak{p}$.

Lemma (GKMS 2021)

In the previous lemma:

 \bullet \mathfrak{h} can be replaced by \mathfrak{g} .

Separating \mathfrak{p} and \mathfrak{h}

Lemma (ess. Dow & Shelah)

Let $\aleph_1 \leq \mu = \mu^{<\mu} \leq \kappa$ be uncountable regular, \mathbb{P} μ -cc forcing $\mu \leq \mathfrak{p}$.

- $\bullet \ \mathbb{P} * (^{<\mu}\mu)^V \text{ forces } \mathfrak{p} = \mu$

Lemma (GKMS 2021)

In the previous lemma:

- $oldsymbol{0}$ $oldsymbol{\mathfrak{h}}$ can be replaced by $oldsymbol{\mathfrak{g}}$.
- 2 If $\mathbb P$ forces Cichoń's maximum then so $\mathbb P*(^{<\mu}\mu)^V$ does.

Separating \mathfrak{p} and \mathfrak{h}

Lemma (ess. Dow & Shelah)

Let $\aleph_1 \leq \mu = \mu^{<\mu} \leq \kappa$ be uncountable regular, \mathbb{P} μ -cc forcing $\mu \leq \mathfrak{p}$.

- $\bullet \ \mathbb{P} * (^{<\mu}\mu)^V \text{ forces } \mathfrak{p} = \mu$

Lemma (GKMS 2021)

In the previous lemma:

- $oldsymbol{0}$ $oldsymbol{\mathfrak{h}}$ can be replaced by \mathfrak{g} .
- ② If $\mathbb P$ forces Cichoń's maximum then so $\mathbb P*(^{<\mu}\mu)^V$ does.

Many more stuff

