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Drawing by

Leon Jesmanowicz

Throughout the talk, κ denotes a regular

uncountable cardinal. Recall that a poset

P is κ-Knaster if, whenever, A ∈ [P]κ,

there is B ∈ [A]κ consisting of pairwise

compatible conditions.

The κ-Knaster property is a strengthening

of the κ-cc.

In contrast to the κ-cc, the κ-Knaster

property is always productive: if P and Q
are κ-Knaster, then P×Q are κ-Knaster.
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Infinite productivity

For an infinite cardinal θ, we say that the κ-Knaster property is

θ-productive if, whenever {Pi | i < θ} are all κ-Knaster, the

full-support product
∏
i<θ Pi is κ-Knaster.

It’s not hard to show

that, if κ is weakly compact, then the κ-Knaster property is

<κ-productive.

Theorem (Cox-Lücke, ’17)

Assuming the consistency of a weakly compact cardinal, there is

consistently an inaccessible cardinal κ that is not weakly compact

for which the κ-Knaster property is <κ-productive.

Theorem (LH-Lücke, ’18)

If the κ-Knaster property is ℵ0-productive, then κ is weakly

compact in L.
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Accessible cardinals

The results of the previous slide left open the question of whether

the κ-Knaster property can consistently be infinitely productive

for some accessible cardinal κ, e.g., κ = ℵ2 or κ = ℵω+1.

Theorem (LH-Rinot, [1])

Suppose that κ is a successor cardinal. Then there is a κ-Knaster

poset P such that Pℵ0 is not κ-cc.

The proof of this theorem involved colorings c : [κ]2 → ω with

strong unboundedness properties and initiated a systematic

investigation of such colorings, their variations, and their

applications.
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Chapter 1
Strongly unbounded colorings



U(κ, µ, θ, χ)

Definition

U(κ, µ, θ, χ) asserts the existence of a coloring c : [κ]2 → θ such

that, for every χ′ < χ and A ⊆ [κ]χ
′

consisting of κ-many

pairwise disjoint sets, and for every color i < θ, there is B ⊆ A
of size µ such that, for all a < b, both from B, we have

min(c [a × b]) > i .

U(κ, µ, θ, χ) can be seen as asserting a strong failure of Ramsey’s

theorem at κ.

Note that, for all µ′ ≤ µ and χ′ ≤ χ, U(κ, µ, θ, χ) implies

U(κ, µ′, θ, χ′), but there is no such obvious monotonicity in the

third coordinate.
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Failure of infinite productivity

Lemma

Suppose that θ ≤ χ < κ are infinite, regular cardinals, κ is

(<χ)-inaccessible, and U(κ, κ, θ, χ) holds. Then there is a poset

P such that

• P is χ-directed closed;

• Pτ is κ-Knaster for all τ < θ;

• Pθ is not κ-c.c.

Sketch of proof.

Let c : [κ]2 → θ witness U(κ, κ, θ, χ). For all i < θ, let Pi be the

poset whose conditions are all sets x ∈ [κ]<χ such that

min(c“[x ]2) > i , ordered by reverse inclusion. Let P be the lottery

sum
⊕
i<θ Pi . Now check that P works.
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Further proof sketch?



Productivity at successor cardinals

The principle U(· · · ) has been implicit in a variety of previous

work. Particularly notable for us is the following result of

Todorcevic.

Theorem (Todorcevic)

For every infinite cardinal λ, U(λ+, λ+,ℵ0, cf(λ)) holds.

Corollary

For every successor cardinal κ, the κ-Knaster property fails to be

ℵ0-productive.
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Provable instances of U(κ, µ, θ, χ)

Given a coloring c : [κ]2 → θ, an ordinal β < κ, and a color i < θ,

let Dc≤i(β) := {α < β | c(α, β) ≤ i}.

We say that c is closed if

Dc≤i(β) is a closed subset of β for all β < κ and i < θ.

Theorem (LH-Rinot, [1])

Suppose that θ, χ < κ are regular cardinals. Any one of the

following entails U(κ, κ, θ, χ).

1 There is a non-reflecting stationary subset of κ ∩ cof(≥ χ).
2 κ = λ+ and λ is regular.

3 κ = λ+ and cf(λ) = θ.

4 �(κ) holds.

Moreover, in all instances, U(κ, κ, θ, χ) is witnessed by a closed

coloring.
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Consistent failures of U(κ, µ, θ, χ)

Proposition (LH-Rinot, [1])

1 If κ is weakly compact, then U(κ, 2, θ, 2) fails for all θ < κ.

2 If λ is a singular limit of strongly compact cardinals, then

U(λ+, 2, θ, cf(λ)+) fails for all regular θ ∈ λ+ \ {cf(λ)}

Theorem (LH-Rinot, [2])

1 Suppose that κ is weakly compact.

• There is a forcing extension in which U(κ, κ, ω, ω) fails but κ

is not weakly compact.
• For every infinite regular θ < κ, there is a forcing extension in

which U(κ, κ, θ, χ) holds for all χ < κ but U(κ, κ, θ′, θ+) fails

for all regular θ′ 6= θ.

2 If there is a supercompact cardinal, then there is a forcing

extension in which U(ℵω+1, 2,ℵk ,ℵ1) fails for all 1 ≤ k < ω.
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Chapter 3
The C -sequence number



C -sequences and weak
compactness

Definition

A C -sequence over κ is a sequence 〈Cα | α < κ〉 such that

• Cα is a club in α for all α ∈ lim(κ);

• Cα+1 = {α} for all α < κ.

Theorem (Todorcevic)

For every regular, uncountable cardinal κ, the following are

equivalent.

1 κ is weakly compact.

2 For every C -sequence 〈Cα | α < κ〉, there is an unbounded

D ⊆ κ such that, for every α < κ, there is β < κ for which

D ∩ α = Cβ ∩ α.
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The C -sequence number

Motivated by Todorcevic’s characterization of weak compactness,

we introduce the notion of the C -sequence number of a cardinal

κ (denoted χ(κ)), which can be seen as measuring how far away

κ is from being weakly compact.

Definition (The C -sequence number)

For every regular, uncountable cardinal κ, let χ(κ) = 0 if κ is

weakly compact. Otherwise, let χ(κ) be the least cardinal χ such

that, for every C -sequence 〈Cα | α < κ〉, there is an unbounded

D ⊆ κ such that, for every α < κ, there is b ∈ [κ]χ for which

D ∩ α ⊆
⋃
β∈b Cβ.
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Some basic facts

Proposition

The C -sequence number satisfies the following properties.

1 χ(κ) ≤ κ.

2 For every infinite cardinal λ, cf(λ) ≤ χ(λ+) ≤ λ. In

particular, if λ is regular, then χ(λ+) = λ.

3 If λ is a singular limit of strongly compact cardinals, then

χ(λ+) = cf(λ).

4 If χ(κ) > 1, then χ(κ) ≥ ℵ0.
5 If χ(κ) = 1, then κ is greatly Mahlo.

6 Every stationary subset of κ ∩ cof(> χ(κ)) reflects.

7 If µ < κ and �(κ,< µ) holds, then χ(κ) ≥ ℵ0.
8 If �(κ,< ω) holds, then χ(κ) is as large as possible. I.e.,

χ(κ) = sup(κ ∩ Reg).
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Some consistency results

Theorem (LH-Rinot, [2])

1 Suppose that κ is weakly compact.

• There is a forcing extension in which χ(κ) = 1.
• For every infinite regular θ < κ, there is a forcing extension in

which χ(κ) = θ.

2 If there is a supercompact cardinal, then there is a forcing

extension in which χ(ℵω+1) = ℵ0.

Note the similarity to the previous consistency result about

failures of U(κ, µ, θ, χ).
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χ(κ) and closed colorings
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and suppose that there is

a closed witness to U(κ, 2, θ, χ). Then χ(κ) ≥ χ.
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For infinite regular θ < κ, TFAE:

1 there is a C -sequence ~C over κ such that χ(~C ) = θ;

2 there is a closed witness to U(κ, κ, θ, θ).
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Some conjectures

Conjectures

1 For all regular θ < κ, U(κ, κ, θ, χ(κ)) holds.

2 (Slightly less ambitious) For all regular θ ≤ χ(κ),
U(κ, κ, θ, χ(κ)) holds.

3 For all regular, uncountable κ, TFAE:

• χ(κ) ≤ 1;
• the κ-Knaster property is ℵ0-productive.

4 For all regular, uncountable κ, TFAE:

• κ is weakly compact;
• U(κ, 2, θ, 2) fails for all infinite regular θ < κ;
• U(κ, 2,ℵ0, 2) fails.
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Chapter 3
Subadditive colorings



Subadditivity

Definition

A coloring c : [κ]2 → θ is said to be subadditive if, for all

α < β < γ < κ,

1 c(α, γ) ≤ max{c(α, β), c(β, γ)};
2 c(α, β) ≤ max{c(α, γ), c(β, γ)}.

We say that c is subadditive of the first (resp. second) kind if it

satisfies 1 (resp. 2).

Subadditive witnesses to U(κ, µ, θ, χ) are particularly useful in

applications.

Theorem (LH-Rinot, [3])

Suppose that �(κ) holds. Then, for every regular θ < κ, there is

a subadditive witness to U(κ, κ, θ, χ) for all χ < κ.
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Consistent negative results

Subadditive witnesses to U(κ, λ, θ, χ) do not necessarily exist,

though, even when U(κ, λ, θ, χ) holds.

Theorem (LH-Rinot, [3])

If the P-ideal dichotomy holds, then, for every regular κ > ℵ1,
there is no subadditive witness to U(κ, 2,ℵ0, 2).

Theorem (Shani, ’16, LH, ’17)

Relative to the consistency of large cardinals, there are

consistently regular cardinals κ for which �(κ, 2) holds but, for

every regular θ < κ, there is no subadditive witness to

U(κ, 2, θ, 2).
(Here κ can be arranged to be a successor of a regular cardinal, a

successor of a singular cardinal, or an inaccessible cardinal.)
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Tightness of Gδ-modifications

Definition

Let X be a topological space.

1 The tightness of X , denoted t(X ), is the least cardinal κ

such that, for every T ⊆ X and every x ∈ cl(T ), there is

T ′ ∈ [T ]≤κ such that x ∈ cl(T ′).

2 X is Fréchet if for every T ⊆ X and every x ∈ cl(T ), there is

a (countable) sequence of elements of T converging to x .

Note that, if X is Fréchet, then t(X ) ≤ ℵ0.
3 The Gδ-modification of X , denoted Xδ, is the space with the

same underlying set whose topology is generated by the Gδ
sets of X .

Some recent work has been done studying the relationship

between t(X ) and t(Xδ). Of particular interest is whether there is

an upper bound on t(Xδ) for countably tight (or stronger) spaces

X .
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Note that, if X is Fréchet, then t(X ) ≤ ℵ0.
3 The Gδ-modification of X , denoted Xδ, is the space with the

same underlying set whose topology is generated by the Gδ
sets of X .

Some recent work has been done studying the relationship

between t(X ) and t(Xδ). Of particular interest is whether there is

an upper bound on t(Xδ) for countably tight (or stronger) spaces

X .



Tightness of Gδ-modifications

Definition

Let X be a topological space.

1 The tightness of X , denoted t(X ), is the least cardinal κ

such that, for every T ⊆ X and every x ∈ cl(T ), there is

T ′ ∈ [T ]≤κ such that x ∈ cl(T ′).
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Note that, if X is Fréchet, then t(X ) ≤ ℵ0.

3 The Gδ-modification of X , denoted Xδ, is the space with the

same underlying set whose topology is generated by the Gδ
sets of X .

Some recent work has been done studying the relationship

between t(X ) and t(Xδ). Of particular interest is whether there is

an upper bound on t(Xδ) for countably tight (or stronger) spaces

X .



Tightness of Gδ-modifications

Definition

Let X be a topological space.

1 The tightness of X , denoted t(X ), is the least cardinal κ

such that, for every T ⊆ X and every x ∈ cl(T ), there is

T ′ ∈ [T ]≤κ such that x ∈ cl(T ′).
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Some results

Theorem (Dow-Juhász-Soukup-Szentmiklóssy-Weiss, ’19)

If there is a non-reflecting stationary subset of κ ∩ cof(ω), then

there is a Fréchet space X such that t(Xδ) = κ.

Theorem (DHSSW, ’19)

If λ is strongly compact and t(X ) < λ, then t(Xδ) ≤ λ.

Theorem (Chen-Mertens–Szeptycki, ’2X)

If �(κ) holds, then there is a Fréchet α1-space X such that

t(Xδ) = κ.
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An example from a failure of SCH

Theorem (LH-Rinot, [3])

Suppose that µ is a singular cardinal of countable cofinality and

SCH fails at µ. Then there is a Fréchet α1-space X such that

t(Xδ) = µ+.

We’ll end by sketching a proof of this theorem.

Lemma (folklore)

For every infinite cardinal µ, there is a witness c to

U(µ+, 2, cf(µ), 2) such that

• c is subadditive of the first kind;

• c is locally small, i.e., |Dc≤i(β)| < µ for all i < cf(µ) and all

β < µ+.
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Proof sketch
Fix a coloring c : [µ+]2 → ω as in the Lemma.

The underlying set

of X will be µ+ ∪ {∞}. Every element of µ+ is isolated in X .

Basic open neighborhoods of ∞ in X are of the form

Ni ,β := {∞} ∪ (µ+ \Dc≤i(β)),

i.e., the closed subsets of µ+ are precisely the intersections of the

sets Dc≤i(β), so, if T ⊆ µ+, then

∞ ∈ cl(T )⇔ (6 ∃(i , β) ∈ ω × µ+)(T ⊆ Dc≤i(β))
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X is Fréchet

Suppose that T ⊆ µ+ and ∞ ∈ cl(T ).

Suppose first that

|T | < µ. For each β > sup(T ) + 1, define fβ : T → ω by

fβ(α) := c(α, β). Since µ is strong limit, there are an unbounded

A ⊆ µ+ and a function f : T → ω such that fβ = f for all β ∈ A.

Since ∞ ∈ cl(T ), for each i < ω, we can fix αi ∈ T such that

f (αi) ≥ i . Then every Dc≤i(β) contains only finitely many of the

αi ’s, so 〈αi | i < ω〉 converges to ∞.

Suppose now that |T | ≥ µ. For each (i , β), we have

|Dc≤i(β)| < µ, so |[Dc≤i(β)]ℵ0 | < µ. Therefore, the number of

elements of [T ]ℵ0 that are contained in some Dc≤i(β) is at most

µ+. Since SCH fails at µ, |[T ]ℵ0 | > µ+, so we can find a

countable subset of T that is not contained in any Dc≤i(β), and

proceed as in the previous case.
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Suppose that T ⊆ µ+ and ∞ ∈ cl(T ). Suppose first that

|T | < µ. For each β > sup(T ) + 1, define fβ : T → ω by

fβ(α) := c(α, β).

Since µ is strong limit, there are an unbounded

A ⊆ µ+ and a function f : T → ω such that fβ = f for all β ∈ A.

Since ∞ ∈ cl(T ), for each i < ω, we can fix αi ∈ T such that

f (αi) ≥ i . Then every Dc≤i(β) contains only finitely many of the

αi ’s, so 〈αi | i < ω〉 converges to ∞.

Suppose now that |T | ≥ µ. For each (i , β), we have

|Dc≤i(β)| < µ, so |[Dc≤i(β)]ℵ0 | < µ. Therefore, the number of

elements of [T ]ℵ0 that are contained in some Dc≤i(β) is at most

µ+. Since SCH fails at µ, |[T ]ℵ0 | > µ+, so we can find a

countable subset of T that is not contained in any Dc≤i(β), and

proceed as in the previous case.



X is Fréchet
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t(Xδ) = µ+

In X , every closed subset of µ+ is bounded in µ+.

Since every

closed subset of µ+ in Xδ is contained in a countable union of

closed subsets of µ+ in X , this is also true in Xδ. In particular, in

Xδ, ∞ ∈ cl(µ+).

However, for every β < µ+, we have β =
⋃
i<ω Dc≤i(β). Since

Dc≤i(β) is closed in X , β is closed in Xδ. Therefore, ∞ is not in

the closure of any bounded subset of µ+ in Xδ. It follows that

t(Xδ) = µ+.
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All artwork by Vera Molnár.
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