Measurable cardinals and limits in the category of sets

Andrew Brooke-Taylor

University of Leeds

Sakaé Fuchino's Retirement Conference 10 March 2021 New results are joint work with Jiří Adamek, Tim Campion, Leonid Positselski and Jiří Rosický.

Category theory preliminaries

Recall

A category C consists of

- a class of objects, and
- for every pair of objects A and B of C, a set $Hom_C(A, B)$ of morphisms f from A to B, written $f: A \to B$,
- for every object A, a distinguished morphism 1_A in $Hom_{\mathcal{C}}(A, A)$,
- a composition function \circ , taking $f: A \to B$ and $g: B \to C$ to $g \circ f: A \to C$ such that composition is associative, and for any $f: A \to B$, $f \circ 1_A = f = 1_B \circ f$.

E.g.s

- Set is the category with sets as objects and functions as morphisms.
- **Gp** is the category with groups as objects and group homomorphisms as morphisms.

Limits and colimits

We think of a diagram as being a set of objects and morphisms between them.

- The limit of a diagram $\mathcal D$ is an object L along with a $cone\ \delta$ of projection maps to the objects of $\mathcal D$ (such that the triangles formed with the morphisms of $\mathcal D$ commute) such that any other such cone from an object of $\mathcal C$ factors uniquely through δ .
- The colimit of a diagram is the same in reverse.

E.g.

In **Set**, every diagram \mathcal{D} has a limit and a colimit:

- The limit is the subset of the product of the sets in \mathcal{D} consisting of all element whose coordinates "cohere" under the functions of the diagram.
- The colimit is the disjoint union of the sets in \mathcal{D} , modulo identifying elements with their images under the functions in \mathcal{D} .

E.g.

In **Set**, every diagram \mathcal{D} has a limit and a colimit:

- ullet The limit is the subset of the product of the sets in ${\mathcal D}$ consisting of all element whose coordinates "cohere" under the functions of the diagram.
- The colimit is the disjoint union of the sets in \mathcal{D} , modulo identifying elements with their images under the functions in \mathcal{D} .

Gp has all limits & colimits too: limits are the same as in **Set**, and colimits are free products modulo identifications.

Given a set $\mathcal A$ of objects in a category $\mathcal C$ and an object $\mathcal C$ of $\mathcal C$, the canonical diagram of $\mathcal C$ with respect to $\mathcal A$ is the diagram with

- for every object A in A and every morphism $f: A \to C$, a copy of A, which we shall denote by A_f ,
- ullet as morphisms, all morphisms $h\colon A_f\to B_g$ such that $g\circ h=f$.

Note that the morphisms $f: A_f \to C$ form a cocone to C. If this cocone makes C the colimit of its canonical diagram with respect to A, we say that C is a canonical colimit of objects from A.

Note that the morphisms $f: A_f \to C$ form a cocone to C. If this cocone makes C the colimit of its canonical diagram with respect to A, we say that C is a canonical colimit of objects from A. If *every* object is a canonical colimit of objects from from A, we say that A is dense.

E.g.s

- ω is dense in **Set**: every set is the colimit of the diagram of all of its finite subsets, which are the images of functions from finite sets.
- Any set of representatives of all the isomorphism classes of finitely generated groups is dense in **Gp**: every group is the colimit of the diagram of all of its finitely generated subgroups.

Being a canonical colimit of objects from \mathcal{A} is stronger in general than just being a colimit of *some* diagram of objects from \mathcal{A} .

E.g.

Let $\mathbf{Vect}_{\mathbb{R}}$ be the category of real vector spaces, with linear transformations as the morphisms. Consider $\mathcal{A} = \{\mathbb{R}\}$. Then every object of $\mathbf{Vect}_{\mathbb{R}}$ is a colimit of objects from \mathcal{A} , but \mathcal{A} is not dense. Indeed, consider a function $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$ respecting scalar multiplication but not addition. Then there is a cocone mapping each \mathbb{R}_f to \mathbb{R}^2 by $\varphi \circ f$, but it doesn't factor through the canonical cocone by any linear map.

Opposite categories

Given a category \mathcal{C} , \mathcal{C}^{op} is the category with the same objects as \mathcal{C} , and the same morphisms but in the opposite direction. Identity functions remain identity functions, and compositions of morphisms remain compositions of morphisms, just in the opposite order.

E.g.

Set^{op} is the category with sets as objects, and functions as morphisms, with any $f: X \to Y$ in the usual sense being considered as going from Y to X.

Opposite categories

Given a category \mathcal{C} , \mathcal{C}^{op} is the category with the same objects as \mathcal{C} , and the same morphisms but in the opposite direction. Identity functions remain identity functions, and compositions of morphisms remain compositions of morphisms, just in the opposite order.

E.g.

Set^{op} is the category with sets as objects, and functions as morphisms, with any $f: X \to Y$ in the usual sense being considered as going from Y to X.

Question

Is there a dense set in **Set**^{op}?

For any cardinal κ and any set X, consider the canonical diagram \mathcal{D} in \mathbf{Set}^{op} of X with respect to κ .

For any cardinal κ and any set X, consider the canonical diagram $\mathcal D$ in \mathbf{Set}^{op} of X with respect to κ . Since morphisms are reversed, this is the diagram with an object for every function from X to an ordinal in κ , with a function h from α_f to β_σ if $h \circ f = g$.

For any cardinal κ and any set X, consider the canonical diagram $\mathcal D$ in \mathbf{Set}^{op} of X with respect to κ . Since morphisms are reversed, this is the diagram with an object for every function from X to an ordinal in κ , with a function h from α_f to β_g if $h \circ f = g$.

We can think about such functions $f\colon X\to \alpha$ in terms of the partitions $\{f^{-1}\{\gamma\}\mid \gamma\in\alpha\}$ that they define. In this context, the functions in the diagram represent coarsening maps.

This corresponds to the choice of a piece from each of the partitions $(f^{-1}\{\mu_f\})$ in the partition corresponding to $f: X \to \alpha$, in a way that the coarsening maps respect — we can think of this as choosing a "big" piece from each partition.

This corresponds to the choice of a piece from each of the partitions ($f^{-1}\{\mu_f\}$ in the partition corresponding to $f: X \to \alpha$), in a way that the coarsening maps respect — we can think of this as choosing a "big" piece from each partition. These choices form a κ -complete ultrafilter on X!

This corresponds to the choice of a piece from each of the partitions ($f^{-1}\{\mu_f\}$ in the partition corresponding to $f: X \to \alpha$), in a way that the coarsening maps respect — we can think of this as choosing a "big" piece from each partition. These choices form a κ -complete ultrafilter on X!

Indeed by coarsening, if Y is chosen in any partition, it is chosen in the partition $\{Y, X \setminus Y\}$, from which it can be seen that Y is chosen in every partition containing it.

This corresponds to the choice of a piece from each of the partitions ($f^{-1}\{\mu_f\}$ in the partition corresponding to $f: X \to \alpha$), in a way that the coarsening maps respect — we can think of this as choosing a "big" piece from each partition. These choices form a κ -complete ultrafilter on X!

Indeed by coarsening, if Y is chosen in any partition, it is chosen in the partition $\{Y, X \setminus Y\}$, from which it can be seen that Y is chosen in every partition containing it. So let $\mathcal U$ be the set of $Y \subseteq X$ such that Y is chosen in some (any) partitition in which it appears as a piece (i.e., if $Y = f^{-1}(\mu_f)$).

Let $\chi_Y \colon X \to 2$ be the characteristic function of Y, $\chi_Y(x) = 1 \leftrightarrow x \in Y$. Then

$$\mathcal{U} = \{ Y \subseteq X \mid \exists \alpha < \kappa \exists f \colon X \to \alpha (Y = f^{-1} \{ \mu_f \}) \}$$

= $\{ Y \subseteq X \mid \mu_{\chi_Y} = 1 \}.$

Let $\chi_Y \colon X \to 2$ be the characteristic function of Y, $\chi_Y(x) = 1 \leftrightarrow x \in Y$. Then

$$\mathcal{U} = \{ Y \subseteq X \mid \exists \alpha < \kappa \exists f : X \to \alpha (Y = f^{-1} \{ \mu_f \}) \}$$

= \{ Y \subseteq X \| \mu_{\chi_Y} = 1 \}.

• If $Y \in \mathcal{U}$ and $Y \subseteq Z \subseteq X$, then $\{Y, Z \setminus Y, X \setminus Z\}$ coarsens to $\{Z, X \setminus Z\}$, so $Z \in \mathcal{U}$.

Let $\chi_Y \colon X \to 2$ be the characteristic function of Y, $\chi_Y(x) = 1 \leftrightarrow x \in Y$. Then

$$\mathcal{U} = \{ Y \subseteq X \mid \exists \alpha < \kappa \exists f : X \to \alpha (Y = f^{-1} \{ \mu_f \}) \}$$

= $\{ Y \subseteq X \mid \mu_{\chi_Y} = 1 \}.$

- If $Y \in \mathcal{U}$ and $Y \subseteq Z \subseteq X$, then $\{Y, Z \setminus Y, X \setminus Z\}$ coarsens to $\{Z, X \setminus Z\}$, so $Z \in \mathcal{U}$.
- If $Y \in \mathcal{U}$ and $\{Z_{\gamma} \mid \gamma < \alpha\}$ is a partition of Y into fewer than κ many pieces, then since $\{X \smallsetminus Y\} \cup \{Z_{\gamma} \mid \gamma < \alpha\}$ coarsens to $\{Y, X \smallsetminus Y\}$, one of the Z_{γ} is in \mathcal{U} , so \mathcal{U} is κ -complete.

Let $\chi_Y \colon X \to 2$ be the characteristic function of Y, $\chi_Y(x) = 1 \leftrightarrow x \in Y$. Then

$$\mathcal{U} = \{ Y \subseteq X \mid \exists \alpha < \kappa \exists f : X \to \alpha (Y = f^{-1} \{ \mu_f \}) \}$$

= $\{ Y \subseteq X \mid \mu_{\chi_Y} = 1 \}.$

- If $Y \in \mathcal{U}$ and $Y \subseteq Z \subseteq X$, then $\{Y, Z \setminus Y, X \setminus Z\}$ coarsens to $\{Z, X \setminus Z\}$, so $Z \in \mathcal{U}$.
- If $Y \in \mathcal{U}$ and $\{Z_{\gamma} \mid \gamma < \alpha\}$ is a partition of Y into fewer than κ many pieces, then since $\{X \setminus Y\} \cup \{Z_{\gamma} \mid \gamma < \alpha\}$ coarsens to $\{Y, X \setminus Y\}$, one of the Z_{γ} is in \mathcal{U} , so \mathcal{U} is κ -complete.
- $\bullet \ \, \text{For any} \,\, Y\subseteq X, \,\, Y\in \mathcal{U} \,\, \text{if} \,\, u_{\chi_Y}=1 \,\, \text{and} \,\, X\smallsetminus Y\in \mathcal{U} \,\, \text{if} \,\, u_{\chi_Y}=0, \,\, \text{so} \,\, \mathcal{U} \,\, \text{is ultra}.$

Note that the $\chi_{\{x\}}$ component of $\tilde{\mu}^x$ is 1, so $\{x\}$ is in the corresponding ultrafilter — it is the principle ultrafilter defined by x.

Note that the $\chi_{\{x\}}$ component of $\tilde{\mu}^x$ is 1, so $\{x\}$ is in the corresponding ultrafilter — it is the principle ultrafilter defined by x.

So there is a non-principal κ -complete ultrafilter on X if and only if this map $X \to \lim \mathcal{D}$ is not a bijection

Note that the $\chi_{\{x\}}$ component of $\tilde{\mu}^x$ is 1, so $\{x\}$ is in the corresponding ultrafilter — it is the principle ultrafilter defined by x.

So there is a non-principal κ -complete ultrafilter on X if and only if this map $X \to \lim \mathcal{D}$ is not a bijection i.e. not an isomorphism in **Set**

Note that the $\chi_{\{x\}}$ component of $\tilde{\mu}^x$ is 1, so $\{x\}$ is in the corresponding ultrafilter — it is the principle ultrafilter defined by x.

So there is a non-principal κ -complete ultrafilter on X if and only if this map $X \to \lim \mathcal{D}$ is not a bijection

i.e. not an isomorphism in **Set**

i.e. X is not the limit of \mathcal{D} .

Note that by definition, there is a dense set in \mathbf{Set}^{op} if and only if for some κ , every X is the limit of its canonical diagram with respect to κ ,

Note that the $\chi_{\{x\}}$ component of $\tilde{\mu}^x$ is 1, so $\{x\}$ is in the corresponding ultrafilter — it is the principle ultrafilter defined by x.

So there is a non-principal κ -complete ultrafilter on X if and only if this map $X \to \lim \mathcal{D}$ is not a bijection

i.e. not an isomorphism in **Set**

i.e. X is not the limit of \mathcal{D} .

Note that by definition, there is a dense set in \mathbf{Set}^{op} if and only if for some κ , every X is the limit of its canonical diagram with respect to κ , if and only if there are no non-principal κ -complete ultrafilters on any set.

So we have shown

Theorem (Isbell, 1960)

There is a dense set in **Set**^{op} if and only if there are only boundedly many measurable cardinals.

Call a set of objects \mathcal{A} from a category \mathcal{C} colimit dense if for every object \mathcal{K} of \mathcal{C} , \mathcal{K} is the colimit of some diagram of objects from \mathcal{A} .

Note that "colimit dense" is weaker than "dense" — think of it as being short for "arbitrary colimit dense," whereas "dense" means "canonical colimit dense."

Call a set of objects \mathcal{A} from a category \mathcal{C} colimit dense if for every object \mathcal{K} of \mathcal{C} , \mathcal{K} is the colimit of some diagram of objects from \mathcal{A} .

Note that "colimit dense" is weaker than "dense" — think of it as being short for "arbitrary colimit dense," whereas "dense" means "canonical colimit dense."

E.g.

In the case of $\mathbf{Vect}_{\mathbb{R}}$, we saw that $\{\mathbb{R}\}$ is colimit dense but not dense.

Call a set of objects \mathcal{A} from a category \mathcal{C} colimit dense if for every object \mathcal{K} of \mathcal{C} , \mathcal{K} is the colimit of some diagram of objects from \mathcal{A} .

Note that "colimit dense" is weaker than "dense" — think of it as being short for "arbitrary colimit dense," whereas "dense" means "canonical colimit dense."

E.g.

In the case of $\mathbf{Vect}_{\mathbb{R}}$, we saw that $\{\mathbb{R}\}$ is colimit dense but not dense.

On the other hand $\{\mathbb{R}^2\}$ is dense in **Vect**_{\mathbb{R}}.

Question

Does every category with a colimit dense set have a dense set?

Question

Does every category with a colimit dense set have a dense set?

Answer (A., B.-T., C., P. & R.)

No (from ZFC alone). There are even cocomplete examples (i.e., example categories with colimits for all set-sized diagrams).

Question

Does every category with a colimit dense set have a dense set?

Answer (A., B.-T., C., P. & R.)

No (from ZFC alone). There are even cocomplete examples (i.e., example categories with colimits for all set-sized diagrams).

Proof

By case distinction on whether there is a proper class of measurable cardinals!

This case is due to Adámek, Herrlich and Reiterman (1989). Briefly:

This case is due to Adámek, Herrlich and Reiterman (1989). Briefly:

• Since there are only boundedly many measurables, Vopěnka's Principle fails, so there is a proper class $\mathcal G$ of directed graphs with no homomorphisms between them.

This case is due to Adámek, Herrlich and Reiterman (1989). Briefly:

- Since there are only boundedly many measurables, Vopěnka's Principle fails, so there is a proper class $\mathcal G$ of directed graphs with no homomorphisms between them.
- Consider the category of structures (X,Y,E) for the language with one unary predicate and one binary relation, such that the field of E is contained in Y (i.e. (Y,E) is a directed graph). As morphisms in the category, take all functions $f:(X_0,Y_0,E_0)\to (X_1,Y_1,E_1)$ such that $f\upharpoonright Y_0$ is a graph homomorphism from (Y_0,E_0) to (Y_1,E_1) , and such that f maps each element of $X_0\smallsetminus Y_0$ either to an element of $X_1\smallsetminus Y_1$, or to an element of Y_1 in the image of some homomorphism $G\to (Y_1,E_1)$ with $G\in \mathcal{G}$.

This case is due to Adámek, Herrlich and Reiterman (1989). Briefly:

- Since there are only boundedly many measurables, Vopěnka's Principle fails, so there is a proper class $\mathcal G$ of directed graphs with no homomorphisms between them.
- Consider the category of structures (X,Y,E) for the language with one unary predicate and one binary relation, such that the field of E is contained in Y (i.e. (Y,E) is a directed graph). As morphisms in the category, take all functions $f:(X_0,Y_0,E_0)\to (X_1,Y_1,E_1)$ such that $f\upharpoonright Y_0$ is a graph homomorphism from (Y_0,E_0) to (Y_1,E_1) , and such that f maps each element of $X_0\smallsetminus Y_0$ either to an element of $X_1\smallsetminus Y_1$, or to an element of Y_1 in the image of some homomorphism $G\to (Y_1,E_1)$ with $G\in \mathcal{G}$.
- $\{(1,1,\emptyset),(2,2,\{(0,1)\}),(1,\emptyset,\emptyset)\}$ is colimit dense in this category, but a short argument shows that a dense set would give rise to homomorphisms between members of \mathcal{G} .

By Isbell's Theorem, in this case, \mathbf{Set}^{op} does not admit a dense set. So it suffices to find a colimit dense set of objects.

By Isbell's Theorem, in this case, \mathbf{Set}^{op} does not admit a dense set. So it suffices to find a colimit dense set of objects.

Lemma

 $\{3\}$ is colimit dense in **Set**^{op}.

18 / 21

By Isbell's Theorem, in this case, \mathbf{Set}^{op} does not admit a dense set. So it suffices to find a colimit dense set of objects.

Lemma

{3} is colimit dense in **Set**^{op}.

i.e. I claim that every object in \mathbf{Set}^{op} is the colimit of a diagram in \mathbf{Set}^{op} just involving 3 element sets.

By Isbell's Theorem, in this case, \mathbf{Set}^{op} does not admit a dense set. So it suffices to find a colimit dense set of objects.

Lemma

{3} is colimit dense in **Set**^{op}.

i.e. I claim that every object in \mathbf{Set}^{op} is the colimit of a diagram in \mathbf{Set}^{op} just involving 3 element sets.

i.e. Every set is the limit of a diagram just involving 3 element sets.

Proof of Lemma

First, for n = 0, 1, or 2 (or indeed 3), an n-element set is the limit of the diagram

where

$$f_n(i) =$$

$$\begin{cases} i & \text{if } i < n \\ i + 1 \pmod{3} & \text{otherwise.} \end{cases}$$

Idea for sets of cardinality ≥ 2 :

Instead of the partition perspective, think of stripping off individual elements from "the rest."

Done formally:

Suppose X with cardinality at least 2 is given. Choose $t \in X$, and take $s \notin X$. For each $x \in X \setminus \{t\}$, let

$$K_x = \{t, x, s\}.$$

For any set Y containing x, define $f_{Y,x}$: $Y \to K_x$ by

$$f_{Y,x}(a) = \begin{cases} x & \text{if } a = x \\ t & \text{otherwise.} \end{cases}$$

Let $\mathcal D$ be the diagram with objects all the sets K_x and all the 3-element subsets of X containing t, and with morphisms all the functions $f_{Y,x}\colon Y\to K_x$ for Y a 3-element subset of X, and all the functions $f_{K_x,x}\colon K_x\to K_x$.

21 / 21

Done formally:

Suppose X with cardinality at least 2 is given. Choose $t \in X$, and take $s \notin X$. For each $x \in X \setminus \{t\}$, let

$$K_x = \{t, x, s\}.$$

For any set Y containing x, define $f_{Y,x} \colon Y \to K_x$ by

$$f_{Y,x}(a) = \begin{cases} x & \text{if } a = x \\ t & \text{otherwise.} \end{cases}$$

Let $\mathcal D$ be the diagram with objects all the sets K_x and all the 3-element subsets of X containing t, and with morphisms all the functions $f_{Y,x}\colon Y\to K_x$ for Y a 3-element subset of X, and all the functions $f_{K_x,x}\colon K_x\to K_x$.

Then X is the limit in **Set** of \mathcal{D} , with limit maps $f_{X,x} \colon X \to K_x$, and similarly $g_{X,x,y} \colon X \to \{t,x,y\}$ defined by

$$g_{X,x,y}(a) = \begin{cases} a & \text{if } a = x \text{ or } a = y \\ t & \text{otherwise.} \end{cases}$$