On forcing names for ultrafilters

Piotr Borodulin-Nadzieja (University of Wrocław)

Kobe Set Theory Workshop 2021

on the occasion of Sakaé Fuchino's Retirement

An artefact from my office

Countable Chain Condition の Variations に関する

リマー

渕野 昌

(Freie Universität Berlin)

以下では B をブール代数とする。B+'で、B の 0 と異なる元の全体を表わすことにする。 B の任意の非可算部分集合 X に対し、 $x,y \in X$ で、 $x \neq y$ かつ、 $x \cdot y \neq 0$ となるものが存在 するとき B は ccc (countable chain condition)を満たすという. V を集合論の universe として、V の中でのブール代数 B が ccc を満たすとする. G を B^+ (あるいは B の V で の完備化) に関する V 上の generic set とすれば、よく知られているように、V の基数は V[G] でも基数として保存されている。この性質のために、ccc を満たすブール代数のクラ スは、強制法の理論で、きわめて重要な役割をはたす。しかしながら、ccc を満たすブール 代数の具体的な例について、それが ccc を満たしていることの証明を詳しく調べてみると、 同じ証明で、実は B が ccc より更に強い条件を満たしていることが示せている場合が多い。 以下では、そのような条件のうち、 σ-centred および all product ccc と呼ばれるものについ ての特徴付けを与える 命題 1,2 を証明する. ccc に関連する,他の条件や,これらの担互関 係などについては、[1] や [7] などを参照されたい. 命題 1 は、一年ほど前に、S.Koppelberg 教授に教えていただいたものである。これらの結果は、elementary で、多分 forklore に属す ものと思われるが、特に 命題1 は集合論的トポロジーの方での連鎖条件の研究者が見落と していることが多いように見受けられるので、一度書き出しておく価値があるのではない かと思う。

命題2から先では、forcing に関するごく初等的な知識を仮定している。これに関しては [5]

Based on ...

The talk is based on two preprints:

- PBN, Damian Sobota, On sequences of homomorphisms into measure algebras and the Efimov Problem (arxiv)
- PBN, Katarzyna Cegiełka, On measures induced by forcing names for ultrafilters

Fix a Boolean algebra $\mathbb A$ and a forcing $\mathbb P.$

Fix a Boolean algebra \mathbb{A} and a forcing \mathbb{P} .

Let G be a \mathbb{P} -generic over V. Then, in V[G], we may consider \mathbb{A} and ultrafilters on \mathbb{A} (old and new).

Fix a Boolean algebra \mathbb{A} and a forcing \mathbb{P} .

Let G be a \mathbb{P} -generic over V. Then, in V[G], we may consider \mathbb{A} and ultrafilters on \mathbb{A} (old and new).

Applications:

reals are ultrafilters on the Cantor algebra,

Fix a Boolean algebra $\mathbb A$ and a forcing $\mathbb P.$

Let G be a \mathbb{P} -generic over V. Then, in V[G], we may consider \mathbb{A} and ultrafilters on \mathbb{A} (old and new).

Applications:

- reals are ultrafilters on the Cantor algebra,
- Stone spaces of old Boolean algebras may provide interesting examples of topological spaces.

A name induces a homomorphism

Fix a Boolean algebra $\mathbb A$ and a forcing $\mathbb P.$

A name induces a homomorphism

Fix a Boolean algebra $\mathbb A$ and a forcing $\mathbb P.$

Let \dot{u} be a \mathbb{P} -name for an ultrafilter on \mathbb{A} .

A name induces a homomorphism

Fix a Boolean algebra \mathbb{A} and a forcing \mathbb{P} .

Let \dot{u} be a \mathbb{P} -name for an ultrafilter on \mathbb{A} . Consider $\varphi \colon \mathbb{A} \to \mathbb{P}$ defined by

$$\varphi(A) = \|A \in \dot{u}\|.$$

Then φ is a Boolean homomorphism.

A homomorphism induces a name

Fix a Boolean algebra $\mathbb A$ and a forcing $\mathbb P.$

A homomorphism induces a name

Fix a Boolean algebra \mathbb{A} and a forcing \mathbb{P} .

Let $\varphi \colon \mathbb{A} \to \mathbb{P}$ be a Boolean homomorphism.

A homomorphism induces a name

Fix a Boolean algebra \mathbb{A} and a forcing \mathbb{P} .

Let $\varphi \colon \mathbb{A} \to \mathbb{P}$ be a Boolean homomorphism. Consider a \mathbb{P} -name \dot{u} defined by

$$\dot{\varphi} = \{ \langle A, \varphi(A) \rangle \colon A \in \mathbb{A} \}.$$

Then $\dot{\varphi}$ is a name for an ultrafilter on \mathbb{A} .

Names of ultrafilters and Boolean homomorphisms

Fix a Boolean algebra $\mathbb A$ and a forcing $\mathbb P.$

Names of ultrafilters and Boolean homomorphisms

Fix a Boolean algebra \mathbb{A} and a forcing \mathbb{P} .

Proposition

For every \mathbb{P} -name \dot{u} for an ultrafilter on \mathbb{A} there is a Boolean homomorphism $\varphi \colon \mathbb{A} \to \mathbb{P}$ such that

$$1 \Vdash \dot{u} = \dot{\varphi}.$$

Names of ultrafilters and Boolean homomorphisms

Fix a Boolean algebra \mathbb{A} and a forcing \mathbb{P} .

Proposition

For every \mathbb{P} -name \dot{u} for an ultrafilter on \mathbb{A} there is a Boolean homomorphism $\varphi \colon \mathbb{A} \to \mathbb{P}$ such that

$$1 \Vdash \dot{u} = \dot{\varphi}.$$

Remark. Ultrafilters = homomorphisms to $\{0, 1\}$.

Definition

For a cardinal number κ define the measure algebra of type κ by

$$\mathbb{M}_{\kappa} = \mathrm{Bor}(\{0,1\}^{\kappa})_{/\lambda_{\kappa}=0}.$$

Definition

For a cardinal number κ define the measure algebra of type κ by

$$\mathbb{M}_{\kappa} = \mathrm{Bor}(\{0,1\}^{\kappa})_{/\lambda_{\kappa}=0}.$$

Definition

For a cardinal number κ define the measure algebra of type κ by

$$\mathbb{M}_{\kappa} = \mathrm{Bor}(\{0,1\}^{\kappa})_{/\lambda_{\kappa}=0}.$$

Remarks:

 \blacksquare \mathbb{M}_{κ} supports the standard Haar measure λ_{κ} ,

Definition

For a cardinal number κ define the measure algebra of type κ by

$$\mathbb{M}_{\kappa} = \mathrm{Bor}(\{0,1\}^{\kappa})_{/\lambda_{\kappa}=0}.$$

- ${\color{red} \blacksquare} \ \mathbb{M}_{\kappa}$ supports the standard Haar measure λ_{κ} ,
- $M_1 = \{0, 1\},\$

Definition

For a cardinal number κ define the measure algebra of type κ by

$$\mathbb{M}_{\kappa} = \mathrm{Bor}(\{0,1\}^{\kappa})_{/\lambda_{\kappa}=0}.$$

- lacksquare \mathbb{M}_{κ} supports the standard Haar measure λ_{κ} ,
- $M_1 = \{0, 1\},$
- $\mathbb{M}_{\omega} = \operatorname{Bor}[0,1]_{/\mathcal{N}},$

Definition

For a cardinal number κ define the measure algebra of type κ by

$$\mathbb{M}_{\kappa} = \mathrm{Bor}(\{0,1\}^{\kappa})_{/\lambda_{\kappa}=0}.$$

- lacksquare \mathbb{M}_{κ} supports the standard Haar measure λ_{κ} ,
- $M_1 = \{0, 1\},\$
- \blacksquare $\mathbb{M}_{\omega} = \operatorname{Bor}[0,1]_{/\mathcal{N}}$,
- Forcing with $\mathbb{M}_{\kappa} = \text{adding } \kappa \text{ random reals (for } \kappa > \omega).$

Let $\mathbb A$ be a Boolean algebra and $\kappa \geq \omega$.

Let \mathbb{A} be a Boolean algebra and $\kappa \geq \omega$.

Let $\varphi\colon \mathbb{A}\to \mathbb{M}_\kappa$ be a Boolean homomorphism. Then φ induces a measure μ on \mathbb{A} defined by

Let \mathbb{A} be a Boolean algebra and $\kappa \geq \omega$.

Let $\varphi \colon \mathbb{A} \to \mathbb{M}_{\kappa}$ be a Boolean homomorphism. Then φ induces a measure μ on \mathbb{A} defined by

$$\mu(A) = \lambda_{\kappa}(\varphi(A)).$$

Let \mathbb{A} be a Boolean algebra and $\kappa \geq \omega$.

Let $\varphi \colon \mathbb{A} \to \mathbb{M}_{\kappa}$ be a Boolean homomorphism. Then φ induces a measure μ on \mathbb{A} defined by

$$\mu(A) = \lambda_{\kappa}(\varphi(A)).$$

Remark. By a "measure" we mean here a *finitely additive* measure.

Fix a Boolean algebra $\mathbb{A},$ and a measure algebra $\mathbb{M}.$

Fix a Boolean algebra \mathbb{A} , and a measure algebra \mathbb{M} .

Let $\dot{\varphi}$ be a M-name for an ultrafilter on \mathbb{A} . Let μ be the measure induced by φ .

Fix a Boolean algebra \mathbb{A} , and a measure algebra \mathbb{M} .

Let $\dot{\varphi}$ be a M-name for an ultrafilter on \mathbb{A} . Let μ be the measure induced by φ .

Suppose that $\mu = \delta_u$ for some ultrafilter u on \mathbb{A} (in V!). Then . . .

Fix a Boolean algebra \mathbb{A} , and a measure algebra \mathbb{M} .

Let $\dot{\varphi}$ be a M-name for an ultrafilter on \mathbb{A} . Let μ be the measure induced by φ .

Suppose that $\mu = \delta_u$ for some ultrafilter u on \mathbb{A} (in V!). Then . . .

$$1 \Vdash \dot{\varphi} = \check{u}$$
.

Fix a Boolean algebra \mathbb{A} , and a measure algebra \mathbb{M} .

Let $\dot{\varphi}$ be a M-name for an ultrafilter on \mathbb{A} . Let μ be the measure induced by φ .

Suppose that $\mu = \delta_u$ for some ultrafilter u on \mathbb{A} (in V!). Then . . .

$$1 \Vdash \dot{\varphi} = \check{u}$$
.

lacksquare If μ is purely atomic, then

$$1 \Vdash \dot{\varphi} \in V$$
.

Let $\mathbb C$ be Cantor algebra. Fix a measure algebra $\mathbb M.$

Let $\mathbb C$ be Cantor algebra. Fix a measure algebra $\mathbb M.$

Let $\dot{\varphi}$ be a M-name for an ultrafilter on $\mathbb C$ (a real). Let μ be the measure induced by φ .

Let $\mathbb C$ be Cantor algebra. Fix a measure algebra $\mathbb M$.

Let $\dot{\varphi}$ be a M-name for an ultrafilter on $\mathbb C$ (a real). Let μ be the measure induced by φ .

• if μ is the standard Lebesgue measure, then $\dot{\varphi}$ is a "random" real.

Let $\mathbb C$ be Cantor algebra. Fix a measure algebra $\mathbb M$.

Let $\dot{\varphi}$ be a \mathbb{M} -name for an ultrafilter on \mathbb{C} (a real). Let μ be the measure induced by φ .

- if μ is the standard Lebesgue measure, then $\dot{\varphi}$ is a "random" real.
- lacksquare if μ is non-atomic, then $\dot{\varphi}$ is a "new" real.

Application: "reals".

Theorem (Kunen

Theorem (Kunen)

In the classical random model there are no well ordered chains of size ω_2 in $\mathcal{P}(\omega)/\text{Fin}$.

Proposition

Assume GCH. Suppose $(\varphi_{\alpha})_{\alpha<\omega_2}$ is a sequence of homomorphisms $\varphi_{\alpha}\colon \mathbb{C}\to \mathbb{M}_{\omega_2}$. Then there is an automorphisms $\Phi\colon \mathbb{M}_{\omega_2}\to \mathbb{M}_{\omega_2}$ such that $\Phi\circ\varphi_{\alpha}=\varphi_{\beta}$ and $\Phi\circ\varphi_{\beta}=\varphi_{\alpha}$.

Theorem (Kunen)

Theorem (Kunen)

In the classical random model there are no well ordered chains of size ω_2 in $\mathcal{P}(\omega)/\text{Fin}$.

Suppose the contrary. I.e.

 $1 \Vdash$ there is $(\dot{T}_{\alpha})_{\alpha < \omega_2}$ strictly \subseteq^* -increasing in $\mathcal{P}(\omega)$.

Theorem (Kunen)

- Suppose the contrary. I.e. $1 \Vdash$ there is $(\dot{T}_{\alpha})_{\alpha < \omega_2}$ strictly \subseteq^* -increasing in $\mathcal{P}(\omega)$.
- We may assume that $\dot{T}_{\alpha} = \dot{\varphi}_{\alpha}$ for $\alpha < \omega_2$ and a homomorphism $\varphi_{\alpha} \colon \mathbb{C} \to \mathbb{M}_{\omega_2}$.

Theorem (Kunen)

- Suppose the contrary. I.e. $1 \Vdash$ there is $(\dot{T}_{\alpha})_{\alpha < \omega_2}$ strictly \subseteq^* -increasing in $\mathcal{P}(\omega)$.
- We may assume that $\dot{T}_{\alpha} = \dot{\varphi}_{\alpha}$ for $\alpha < \omega_2$ and a homomorphism $\varphi_{\alpha} \colon \mathbb{C} \to \mathbb{M}_{\omega_2}$.
- Then we have an automorphism Φ such that $\Phi[\mathbb{M}_{\omega_2}] \Vdash \Phi \circ \varphi_{\alpha} \subseteq^* \Phi \circ \varphi_{\beta}.$

Theorem (Kunen)

- Suppose the contrary. I.e. $1 \Vdash$ there is $(\dot{T}_{\alpha})_{\alpha < \omega_2}$ strictly \subseteq^* -increasing in $\mathcal{P}(\omega)$.
- We may assume that $\dot{T}_{\alpha} = \dot{\varphi}_{\alpha}$ for $\alpha < \omega_2$ and a homomorphism $\varphi_{\alpha} \colon \mathbb{C} \to \mathbb{M}_{\omega_2}$.
- Then we have an automorphism Φ such that $\Phi[\mathbb{M}_{\omega_2}] \Vdash \Phi \circ \varphi_{\alpha} \subseteq^* \Phi \circ \varphi_{\beta}.$
- But this means that

$$\mathbb{M}_{\omega_2} \Vdash \dot{\varphi}_{\beta} \subseteq^* \dot{\varphi}_{\alpha}.$$

Proposition

Assume GCH. Suppose $(\varphi_{\alpha})_{\alpha<\omega_2}$ is a sequence of homomorphisms $\varphi_{\alpha}\colon \mathbb{C}\to \mathbb{M}_{\omega_2}$. Then there is an automorphisms $\Phi\colon \mathbb{M}_{\omega_2}\to \mathbb{M}_{\omega_2}$ such that $\Phi\circ\varphi_{\alpha}=\varphi_{\beta}$ and $\Phi\circ\varphi_{\beta}=\varphi_{\alpha}$.

■ WLOG: there is a measure μ on $\mathbb C$ such that $\mu = \lambda_{\omega_2} \circ \varphi_\alpha$ for each α .

Proposition

Assume GCH. Suppose $(\varphi_{\alpha})_{\alpha<\omega_2}$ is a sequence of homomorphisms $\varphi_{\alpha}\colon \mathbb{C}\to \mathbb{M}_{\omega_2}$. Then there is an automorphisms $\Phi\colon \mathbb{M}_{\omega_2}\to \mathbb{M}_{\omega_2}$ such that $\Phi\circ\varphi_{\alpha}=\varphi_{\beta}$ and $\Phi\circ\varphi_{\beta}=\varphi_{\alpha}$.

- WLOG: there is a measure μ on $\mathbb C$ such that $\mu = \lambda_{\omega_2} \circ \varphi_\alpha$ for each α .
- Fix an independent family $\{C_n : n \in \omega\} \subseteq \mathbb{C}$ generating \mathbb{C} .

Proposition

Assume GCH. Suppose $(\varphi_{\alpha})_{\alpha<\omega_2}$ is a sequence of homomorphisms $\varphi_{\alpha}\colon \mathbb{C}\to \mathbb{M}_{\omega_2}$. Then there is an automorphisms $\Phi\colon \mathbb{M}_{\omega_2}\to \mathbb{M}_{\omega_2}$ such that $\Phi\circ\varphi_{\alpha}=\varphi_{\beta}$ and $\Phi\circ\varphi_{\beta}=\varphi_{\alpha}$.

- WLOG: there is a measure μ on $\mathbb C$ such that $\mu = \lambda_{\omega_2} \circ \varphi_\alpha$ for each α .
- Fix an independent family $\{C_n : n \in \omega\} \subseteq \mathbb{C}$ generating \mathbb{C} .
- We say that $A \in \mathbb{C}$ is a chunk if it is of the form

$$A = (C_{i_0} \wedge \cdots \wedge C_{i_k}) \wedge (C_{j_0}^c \wedge \cdots \wedge C_{j_l}^c)$$

Proposition

Assume GCH. Suppose $(\varphi_{\alpha})_{\alpha<\omega_2}$ is a sequence of homomorphisms $\varphi_{\alpha}\colon \mathbb{C}\to \mathbb{M}_{\omega_2}$. Then there is an automorphisms $\Phi\colon \mathbb{M}_{\omega_2}\to \mathbb{M}_{\omega_2}$ such that $\Phi\circ\varphi_{\alpha}=\varphi_{\beta}$ and $\Phi\circ\varphi_{\beta}=\varphi_{\alpha}$.

- WLOG: there is a measure μ on $\mathbb C$ such that $\mu = \lambda_{\omega_2} \circ \varphi_\alpha$ for each α .
- Fix an independent family $\{C_n : n \in \omega\} \subseteq \mathbb{C}$ generating \mathbb{C} .
- We say that $A \in \mathbb{C}$ is a chunk if it is of the form

$$A = (C_{i_0} \wedge \cdots \wedge C_{i_k}) \wedge (C_{j_0}^c \wedge \cdots \wedge C_{j_l}^c)$$

• We say that α and β are symmetric if for each chunks A, B

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

Claim. There are $\alpha < \beta < \omega_2$ which are symmetric, i.e.

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

for every chunks A and B.

Claim. There are $\alpha < \beta < \omega_2$ which are symmetric, i.e.

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

for every chunks A and B.

If not, then there is a coloring $c : [\omega_2]^2 \to \mathbb{C} \times \mathbb{C}$ assigning "witnesses".

Claim. There are $\alpha < \beta < \omega_2$ which are symmetric, i.e.

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

for every chunks A and B.

- If not, then there is a coloring $c: [\omega_2]^2 \to \mathbb{C} \times \mathbb{C}$ assigning "witnesses".
- GCH + Erdös-Rado implies that there is an uncountable monochromatic Λ (WLOG = ω_1) with color $\langle A, B \rangle$.

Claim. There are $\alpha < \beta < \omega_2$ which are symmetric, i.e.

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

for every chunks A and B.

- If not, then there is a coloring $c: [\omega_2]^2 \to \mathbb{C} \times \mathbb{C}$ assigning "witnesses".
- GCH + Erdös-Rado implies that there is an uncountable monochromatic Λ (WLOG = ω_1) with color $\langle A, B \rangle$.
- Then" for each $\alpha < \beta < \omega_1$ we have $\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0$ and $\varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) \neq 0$.

For each $\alpha < \beta < \omega_1$ we have $\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0$ and $\varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) \neq 0$.

- For each $\alpha < \beta < \omega_1$ we have $\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0$ and $\varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) \neq 0$.
- Let $D = \bigvee_{\alpha < \omega_1} \varphi_{\alpha}(A)$.

- For each $\alpha < \beta < \omega_1$ we have $\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0$ and $\varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) \neq 0$.
- Let $D = \bigvee_{\alpha < \omega_1} \varphi_{\alpha}(A)$.
- By ccc there is $\gamma < \omega_1$ such that $D = \bigvee_{\alpha < \gamma} \varphi_{\alpha}(A)$.

- For each $\alpha < \beta < \omega_1$ we have $\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0$ and $\varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) \neq 0$.
- Let $D = \bigvee_{\alpha < \omega_1} \varphi_{\alpha}(A)$.
- By ccc there is $\gamma < \omega_1$ such that $D = \bigvee_{\alpha < \gamma} \varphi_{\alpha}(A)$.
- Then $D \wedge \varphi_{\gamma}(B) = 0$.

- For each $\alpha < \beta < \omega_1$ we have $\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0$ and $\varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) \neq 0$.
- Let $D = \bigvee_{\alpha < \omega_1} \varphi_{\alpha}(A)$.
- By ccc there is $\gamma < \omega_1$ such that $D = \bigvee_{\alpha < \gamma} \varphi_{\alpha}(A)$.
- Then $D \wedge \varphi_{\gamma}(B) = 0$.
- But $\varphi_{\gamma+1}(A) \wedge \varphi_{\gamma}(B) \neq 0$ and $\varphi_{\gamma+1}(A) \leq D$. A contradiction.

Claim. There are α and $\beta < \omega_2$ which are symmetric, i.e.

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

for each chunks A and B.

Claim. There are α and $\beta < \omega_2$ which are symmetric, i.e.

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

for each chunks A and B.

So, by Sikorski's Extension Lemma, there is an automorphism $\Phi\colon \mathbb{M}\to \mathbb{M}$ such that

$$\Phi \circ \varphi_{\alpha} = \varphi_{\beta}$$
 and $\Phi \circ \varphi_{\beta} = \varphi_{\alpha}$.

Claim. There are α and $\beta < \omega_2$ which are symmetric, i.e.

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

for each chunks A and B.

So, by Sikorski's Extension Lemma, there is an automorphism $\Phi\colon \mathbb{M}\to \mathbb{M}$ such that

$$\Phi \circ \varphi_{\alpha} = \varphi_{\beta}$$
 and $\Phi \circ \varphi_{\beta} = \varphi_{\alpha}$.

and we are done.

Theorem (Kunen)

Application: peculiar topological spaces

Efimov problem

Theorem (Dow, Fremlin)

In the classical random model there is a Efimov space, i.e. an infinite compact space without a nontrivial convergent sequences and without a copy of $\beta\omega$.

Frechet-Nikodym metric

Definition

If $\mathbb M$ is a measure algebra, then $d_\lambda\colon \mathbb M \to [0,\infty)$ defined by

$$d_{\lambda}(A,B) = \mu(A \triangle B)$$

is a metric (called Frechet-Nikodym metric).

Frechet-Nikodym metric

Definition

If $\mathbb M$ is a measure algebra, then $d_\lambda\colon \mathbb M \to [0,\infty)$ defined by

$$d_{\lambda}(A,B) = \mu(A \triangle B)$$

is a metric (called Frechet-Nikodym metric).

Definition

We say that a sequence of homomorphisms $\varphi_n \colon \mathbb{A} \to \mathbb{M}$ converges metrically pointwise to a homomorphism $\varphi \colon \mathbb{A} \to \mathbb{M}$ if

$$d_{\lambda}(\varphi_n(A),\varphi(A))\to 0.$$

Frechet-Nikodym metric

Definition

If \mathbb{M} is a measure algebra, then $d_{\lambda} \colon \mathbb{M} \to [0, \infty)$ defined by

$$d_{\lambda}(A,B) = \mu(A \triangle B)$$

is a metric (called Frechet-Nikodym metric).

Definition

We say that a sequence of homomorphisms $\varphi_n \colon \mathbb{A} \to \mathbb{M}$ converges metrically pointwise to a homomorphism $\varphi \colon \mathbb{A} \to \mathbb{M}$ if

$$d_{\lambda}(\varphi_n(A),\varphi(A))\to 0.$$

Remark. Stone topology = pointwise convergence topology.

Pointwise convergence and convergence in the extension

Proposition (PBN, Sobota)

Suppose that

 $\mathbb{M} \Vdash (\dot{\varphi}_n)$ converges to $\dot{\varphi}$.

Then (φ_n) converges metrically pointwise to φ .

Pointwise convergence and convergence in the extension

Proposition (PBN, Sobota)

Suppose that

 $\mathbb{M} \Vdash (\dot{\varphi}_n)$ converges to $\dot{\varphi}$.

Then (φ_n) converges metrically pointwise to φ . Consequently, $\lambda \circ \varphi_n$ converges weakly* to $\lambda \circ \varphi$.

Pointwise algebraic convergence and convergence in the extension

Definition

We say that a sequence (A_n) in a Boolean algebra converges algebraically to A if

$$\bigvee \bigwedge A_n = \bigwedge \bigvee A_n = A.$$

Pointwise algebraic convergence and convergence in the extension

Definition

We say that a sequence (A_n) in a Boolean algebra converges algebraically to A if

$$\bigvee \bigwedge A_n = \bigwedge \bigvee A_n = A.$$

Proposition (PBN, Sobota)

Let M be a measure algebra. Then

$$\mathbb{M} \Vdash (\dot{\varphi}_n)$$
 converges to $\dot{\varphi}$

if and only if (φ_n) converges to φ pointwise algebraically.

Uniform convergence

Definition

We say that a sequence of homomorphisms $\varphi_n \colon \mathbb{A} \to \mathbb{M}$ converges uniformly to a homomorphism $\varphi \colon \mathbb{A} \to \mathbb{M}$ if

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall A \in \mathbb{A} \ d_{\lambda}(\varphi_n(A), \varphi(A)) < \varepsilon.$$

Uniform convergence

Definition

We say that a sequence of homomorphisms $\varphi_n \colon \mathbb{A} \to \mathbb{M}$ converges uniformly to a homomorphism $\varphi \colon \mathbb{A} \to \mathbb{M}$ if

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall A \in \mathbb{A} \ d_{\lambda}(\varphi_n(A), \varphi(A)) < \varepsilon.$$

Theorem (PBN, Sobota, 2020)

Let \mathbb{M} be a measure algebra. If $\mathbb{M} \Vdash (\dot{\varphi}_n)$ converges trivially to $\dot{\varphi}$, then (φ_n) converges to φ uniformly.

Uniform convergence

Definition

We say that a sequence of homomorphisms $\varphi_n \colon \mathbb{A} \to \mathbb{M}$ converges uniformly to a homomorphism $\varphi \colon \mathbb{A} \to \mathbb{M}$ if

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall A \in \mathbb{A} \ d_{\lambda}(\varphi_n(A), \varphi(A)) < \varepsilon.$$

Theorem (PBN, Sobota, 2020)

Let \mathbb{M} be a measure algebra. If $\mathbb{M} \Vdash (\dot{\varphi}_n)$ converges trivially to $\dot{\varphi}$, then (φ_n) converges to φ uniformly.

If $\mathbb{M} \Vdash (\dot{\varphi}_n)$ converges non-trivially to $\dot{\varphi}$, then (φ_n) does not converge to φ uniformly.

Assume $1 \Vdash \dot{\varphi} \neq \dot{\psi}$.

Assume
$$1 \Vdash \dot{\varphi} \neq \dot{\psi}$$
. Then

$$1 \Vdash \exists A \in \mathbb{A} \ A \in \dot{\varphi} \setminus \dot{\psi}.$$

Assume $1 \Vdash \dot{\varphi} \neq \dot{\psi}$. Then

$$1 \Vdash \exists A \in \mathbb{A} \ A \in \dot{\varphi} \setminus \dot{\psi}.$$

There is an antichain (p_n) in \mathbb{M} and a sequence (A_n) of elements of \mathbb{A} such that

$$p_n \Vdash A_n \in \dot{\varphi} \setminus \dot{\psi}.$$

Assume $1 \Vdash \dot{\varphi} \neq \dot{\psi}$. Then

$$1 \Vdash \exists A \in \mathbb{A} \ A \in \dot{\varphi} \setminus \dot{\psi}.$$

There is an antichain (p_n) in \mathbb{M} and a sequence (A_n) of elements of \mathbb{A} such that

$$p_n \Vdash A_n \in \dot{\varphi} \setminus \dot{\psi}.$$

Can we say anything about $\lambda(p_n)$?

A fence exercise

Fence exercise

Shimamura and Komako are painting a picket fence between their properties. The fence consists of *n* many rails. Each rail has two sides—Shimamura's and Komako's—and those sides have to be painted in such a way that Shimamura's side has different colour than Komako's.

Fence exercise

Shimamura and Komako are painting a picket fence between their properties. The fence consists of *n* many rails. Each rail has two sides—Shimamura's and Komako's—and those sides have to be painted in such a way that Shimamura's side has different colour than Komako's.

No matter how many colours they use, there is always a set B of at least n/4 many rails with the following property: the set of Shimamura's colours used in B is disjoint with the set of Komako's colours used in B.

Fence exercise

Shimamura and Komako are painting a picket fence between their properties. The fence consists of *n* many rails. Each rail has two sides—Shimamura's and Komako's—and those sides have to be painted in such a way that Shimamura's side has different colour than Komako's.

No matter how many colours they use, there is always a set B of at least n/4 many rails with the following property: the set of Shimamura's colours used in B is disjoint with the set of Komako's colours used in B.

[I will present a proof by Dominik Gdesz]

The 1/4 theorem

Theorem (PBN, Sobota)

Let M be a measure algebra. If

$$\mathbb{M}\Vdash \exists A\in \mathbb{A}\ A\in \dot{\varphi}\setminus \dot{\psi},$$

then there is $p \in \mathbb{M}$, $A \in \mathbb{A}$ such that $\lambda(p) > 1/4$ and

$$p \Vdash A \in \dot{\varphi} \setminus \dot{\psi}.$$

The 1/4 theorem

Theorem (PBN, Sobota)

Let M be a measure algebra. If

$$\mathbb{M}\Vdash \exists A\in \mathbb{A}\ A\in \dot{\varphi}\setminus \dot{\psi},$$

then there is $p \in \mathbb{M}$, $A \in \mathbb{A}$ such that $\lambda(p) > 1/4$ and

$$p \Vdash A \in \dot{\varphi} \setminus \dot{\psi}.$$

The crux of the proof: fence exercise.

The 1/4 theorem

Theorem (PBN, Sobota)

Let M be a measure algebra. If

$$\mathbb{M}\Vdash \exists A\in \mathbb{A}\ A\in \dot{\varphi}\setminus \dot{\psi},$$

then there is $p \in \mathbb{M}$, $A \in \mathbb{A}$ such that $\lambda(p) > 1/4$ and

$$p \Vdash A \in \dot{\varphi} \setminus \dot{\psi}.$$

The crux of the proof: fence exercise.

Theorem (PBN, Sobota)

Let $\mathbb A$ be a Boolean algebra, and let $\mathbb M$ be a measure algebra. Then the following are equivalent:

■ $\mathbb{M} \Vdash \operatorname{St}(\mathbb{A})$ does not have non-trivial convergent sequences;

Theorem (PBN, Sobota)

Let $\mathbb A$ be a Boolean algebra, and let $\mathbb M$ be a measure algebra. Then the following are equivalent:

- $\mathbb{M} \Vdash \operatorname{St}(\mathbb{A})$ does not have non-trivial convergent sequences;
- every pointwise algebraically convergent sequence of homomorphisms from \mathbb{A} into \mathbb{M}_{κ} converges uniformly.

Theorem (PBN, Sobota)

Let $\mathbb A$ be a Boolean algebra, and let $\mathbb M$ be a measure algebra. Then the following are equivalent:

- $\blacksquare M \Vdash \operatorname{St}(\mathbb{A})$ does not have non-trivial convergent sequences;
- every pointwise algebraically convergent sequence of homomorphisms from \mathbb{A} into \mathbb{M}_{κ} converges uniformly.

Corollary

Every pointwise algebraically convergent sequence of homomorphisms from $\mathcal{P}(\omega)/\text{Fin}$ into \mathbb{M}_{κ} converges uniformly.

Corollary

Every pointwise algebraically convergent sequence of homomorphisms from $\mathcal{P}(\omega)/\text{Fin}$ into \mathbb{M}_{κ} converges uniformly.

Corollary

Every pointwise algebraically convergent sequence of homomorphisms from $\mathcal{P}(\omega)/\text{Fin}$ into \mathbb{M}_{κ} converges uniformly.

Theorem (PBN, Cegiełka)

For each $\kappa \geq \omega$ and a Boolean algebra $\mathbb A$ there is a sequence of homomorphisms from $\mathbb A$ into $\mathbb M_\kappa$ which converges pointwise metrically but not uniformly.

Thank you

