Superstrong and Huge Reflection Joan Bagaria Kobe Set Theory Workshop (Online) on the occasion of Sakaé Fuchino's Retirement 10 March 2021 ### Structural Reflection SR: (Structural Reflection) For every definable, in the first-order language of set theory (possibly with parameters), class $\mathbb C$ of relational structures of the same type there exists an ordinal α that reflects $\mathbb C$, i.e., for every $\mathbb A$ in $\mathbb C$ there exists $\mathbb B$ in $\mathbb C \cap \mathbb V_\alpha$ and an elementary embedding from $\mathbb B$ into $\mathbb A$. The SR principle may be properly formulated in the first-order language of set theory as an axiom schema, to wit, for each natural number n, and set P, let $$\begin{split} \Sigma_n(P)\text{-SR: } &(\Sigma_n\text{-Structural Reflection}) \text{ For every} \\ &\Sigma_n\text{-definable, with parameters in P, class } \mathbb{C} \text{ of } \\ &\text{relational structures of the same type there is an } \\ &\text{ordinal } \alpha \text{ that reflects } \mathbb{C}. \end{split}$$ $\Pi_n(P)$ -SR may be defined analogously. # SR from Supercompact to Vopěnka's Principle Table 1¹ | Complexity | SR | |---------------------------------|-------------------------| | Σ_1 | ZFC | | Π_1 , Σ_2 | Supercompact | | Π_2 , Σ_3 | Extendible | | Π ₃ , Σ ₄ | $C^{(2)}$ -Extendible | | : | : | | Π_n , Σ_{n+1} | $C^{(n-1)}$ -Extendible | | : | : | | Π_n , all n | VP | ¹J. Bagaria. C⁽ⁿ⁾-cardinals. Archive for Math. Logic, 51:213–240, 2012. J. Bagaria, C. Casacuberta, A. R. D. Mathias, and J. Rosický. Definable orthogonality classes in accessible categories are small. *Journal of the European Mathematical Society*, 17(3):549–589, 2015. ### Product SR PSR: (Product Structural Reflection) For every (definable) class of relational structures $\mathbb C$ of the same type, τ , there exists an ordinal α that product-reflects $\mathbb C$, i.e., for every $\mathcal A$ in $\mathbb C$ there exists a set $\mathbb S$ of structures of type τ (although not necessarily in $\mathbb C$) with $\mathcal A \in \mathbb S$ and an elementary embedding $\mathfrak j: \prod (\mathbb C \cap V_\alpha) \to \prod \mathbb S$. ### Product SR For Γ a definability class (i.e., Σ_n or Π_n , some n > 0), let: $\Gamma ext{-PSR:}$ $(\Gamma ext{-Product Structural Reflection})$ There exists a (proper class of) cardinal(s) κ that product-reflect all $\Gamma ext{-definable}$, with parameters in V_{κ} , class ${\mathfrak C}$ of structures of the same type. #### Remark We may, equivalently, restrict to definable classes of natural structures, namely structures of the form $\langle V_{\alpha}, \in, A \rangle$, where $A \subseteq V_{\alpha}$. # SR from Strong to ORD is Woodin Table 2² | Complexity | PSR | |--------------------------|-----------------| | Σ_1 | ZFC | | Π_1 , Σ_2 | Strong | | Π_2 , Σ_3 | Π_2 -Strong | | Π_3 , Σ_4 | Π_3 -Strong | | : | : | | Π_n , Σ_{n+1} | Π_n -Strong | | : | : | | Π_n , all n | ORD is Woodin | ²J. Bagaria and T. Wilson. The Weak Vopěnka Principle for definable classes of structures. *To appear*, 2020. # Strong cardinals Recall that a cardinal κ is strong if for every ordinal λ there exists an elementary embedding $j:V\to M$, with M transitive, $critj=\kappa$, and $V_\lambda\subseteq M$. More generally, we define: #### **Definition** A cardinal κ is Σ_n -strong if for every Σ_n -definable (with parameters in V_κ) class A, for every ordinal λ there exists an elementary embedding $j:V\to M$, with M transitive, $\mathrm{crit}(j)=\kappa$, $V_\lambda\subseteq M$, and $A\cap V_\lambda\subseteq j(A)$. Every strong cardinal is Σ_2 -strong. Also, if $\lambda \in C^{(n+1)}$, then a cardinal is λ - Π_n -strong iff it is λ - Σ_{n+1} -strong. So, Π_n -strong $\equiv \Sigma_{n+1}$ -strong. ### ORD is Woodin # Definition (3) ORD is Woodin if for every definable $A \subseteq V$ there exists some α which is A-strong, i.e., for every γ there is an elementary embedding $j: V \to M$ with $crit(j) = \alpha$, $\gamma < j(\alpha)$, $V_{\gamma} \subseteq M$, and $A \cap V_{\gamma} = j(A) \cap V_{\gamma}$. Note that if δ is a Woodin cardinal, then V_{δ} satisfies ORD is Woodin. ³J. Bagaria and T. Wilson. The Weak Vopěnka Principle for definable classes of structures. *To appear*, 2020. # SR from Strong to ORD is Woodin Table 2⁴ | Complexity | PSR | |--------------------------|-----------------| | Σ_1 | ZFC | | Π_1 , Σ_2 | Strong | | Π_2 , Σ_3 | Π_2 -Strong | | Π_3 , Σ_4 | Π_3 -Strong | | : | i: | | Π_n , Σ_{n+1} | Π_n -Strong | | : | i | | Π_n , all n | ORD is Woodin | ⁴J. Bagaria and Trevor Wilson. The Weak Vopěnka Principle for definable classes of structures. *To appear*, 2020. ### PSR redefined If κ is a Π_n -strong cardinal, then for every Π_n -definable (with parameters in V_κ) class ${\mathfrak C}$ of relational structures of the same type $\tau,$ and for every $\beta,$ there exists a set S of structures of type τ (although possibly not in ${\mathfrak C}$) that contains ${\mathfrak C}\cap V_\beta$ and there exists an elementary embedding $h:\prod({\mathfrak C}\cap V_\kappa)\to\prod S$ with the following additional properties: - 1. Faithful: For every $f \in \prod (\mathcal{C} \cap V_{\kappa})$, $h(f) \upharpoonright (\mathcal{C} \cap V_{\kappa}) = f$. - 2. \subseteq -chain-preserving: If $f \in \prod (\mathcal{C} \cap V_{\kappa})$ is so that $f(\mathcal{A}) \subseteq f(\mathcal{A}')$ whenever $A \subseteq A'$, then so is h(f). ### PSR redefined Thus, the following is an equivalent reformulation of Γ -PSR: Γ-PSR: (Γ-Product Structural Reflection. Second version) There exist a (proper class of) cardinal(s) κ that product-reflect all Γ-definable, with parameters in V_{κ} , proper class $\mathfrak C$ of (natural) structures. I.e., for every $\mathfrak B$ there exists a set S of (natural) structures of the same type that contains $\mathfrak C \cap V_{\mathfrak B}$ and a faithful and \subseteq -chain-preserving elementary embedding $h: \prod (\mathfrak C \cap V_{\kappa}) \to \prod S$. ### PSR redefined #### **Theorem** There is a Π_1 -definable, without parameters, class $\mathbb C$ of natural structures such that if a cardinal κ product-reflects $\mathbb C$, then κ is a strong cardinal. Let \mathcal{C} be the Π_1 -definable class of all structures $$A_{\alpha} := \langle V_{\lambda_{\alpha}}, \in, \alpha \rangle$$ where α is the α -th element of $C^{(1)}$ and λ_{α} is the least cardinal in $C^{(1)}$ greater than α . #### **Theorem** A cardinal κ is Π_n -strong if and only it it witnesses Π_n -PSR. ## Strong Product Structural reflection Consider now the following, arguably more natural, strengthening of PSR: SPSR: (Strong Product Structural Reflection) For every (definable) class of relational structures ${\mathfrak C}$ of the same type, τ , there exists an ordinal α that strongly product-reflects ${\mathfrak C}$, i.e., for every ${\mathcal A}$ in ${\mathfrak C}$ there exists an ordinal β with ${\mathcal A} \in V_\beta$ and an elementary embedding $j: \prod ({\mathfrak C} \cap V_\alpha) \to \prod ({\mathfrak C} \cap V_\beta)$. # Strong Product Structural reflection We may formally define SPSR for classes of structures that are definable in the first-order language of set theory as an axiom schema: $\Gamma\text{-SPSR: }(\Gamma\text{-Strong Product Structural Reflection}) \ There \\ exists a (proper class of) cardinal(s) <math>\kappa$ that strongly ρ product-reflect all Γ -definable, with parameters in V_{κ} , class $\mathcal C$ of natural structures. # Definition (5) A cardinal κ is superstrong above λ , for some $\lambda \geqslant \kappa$, if there exists an elementary embedding $j: V \to M$, with M transitive, $crit(j) = \kappa, \ j(\kappa) > \lambda$, and $V_{j(\kappa)} \subseteq M$. A cardinal κ is *globally superstrong* if it is superstrong above λ , for every $\lambda \geqslant \kappa$. A cardinal κ is $C^{(n)}$ -superstrong above λ , for some $\lambda \geqslant \kappa$, if there exists an elementary embedding $j:V \to M$, with M transitive, $crit(j) = \kappa, \ j(\kappa) > \lambda, \ V_{j(\kappa)} \subseteq M$, and $j(\kappa) \in C^{(n)}$. A cardinal κ is $C^{(n)}$ -globally superstrong if it is $C^{(n)}$ -superstrong above λ , for every $\lambda \geqslant \kappa$. ⁵ J. Cai and K. Tsaprounis. On strengthenings of superstrong cardinals. *New York Journal of Mathematics*, 25:174–194, 2019. If κ is $C^{(n)}$ -gobally superstrong, then there are many $C^{(n)}$ -superstrong cardinals below κ . If κ is $\kappa+1$ -extendible, then V_{κ} satisfies that there is a proper class of $C^{(n)}$ -globally superstrong cardinals, for every n. Moreover, if κ is $C^{(n)}$ -extendible, then there are many $C^{(n)}$ -globally superstrong cardinals below κ . ### Proposition If κ is $C^{(n)}$ -globally superstrong, then it witnesses Π_n -SPSR. The proof of the last proposition shows that the witnessing elementary embeddings are faithful and \subseteq -chain preserving. Thus, we reformulate the SPSR schema as follows: $\begin{array}{l} \Gamma\text{-SPSR: } (\Pi_n\text{-Strong Product Structural Reflection.} \\ Second version) \ There \ exist \ a \ (proper \ class \ of) \\ cardinal(s) \ \kappa \ that \ strongly\text{-product-reflect all} \\ \Gamma\text{-definable, with parameters in } V_\kappa, \ proper \ classes \ \mathfrak{C} \\ of \ natural \ structures, \ i.e., \ for \ every \ \mathcal{A} \in \mathfrak{C} \ there \\ exists \ an \ ordinal \ \beta \ with \ \mathcal{A} \in V_\beta \ and \ a \ faithful \ and \\ \subseteq \text{-chain-preserving elementary embedding} \\ h: \prod (\mathfrak{C} \cap V_\kappa) \to \prod (\mathfrak{C} \cap V_\beta). \end{array}$ Similarly as in the case of strong cardinals, we can now prove the following: #### Theorem There is a Π_n -definable, without parameters, class $\mathbb C$ of natural structures such that if a cardinal κ strongly-product-reflects $\mathbb C$, then κ is a $\mathbb C^{(n)}$ -globally superstrong cardinal. # SPSR and globally superstrong cardinals ### Sketch of proof. Let \mathcal{C} be the Π_n -definable class of all structures $$A_{\alpha} := \langle V_{\lambda_{\alpha}}, \in, \alpha \rangle$$ where α has uncountable cofinality and is the α -th element of $C^{(n)}$, and λ_{α} is the least cardinal in $C^{(n)}$ greater than α . Let κ witness SPSR for \mathcal{C} . Let $I := \{\alpha : \mathcal{A}_{\alpha} \in V_{\kappa}\}$. Since $$\kappa \in C^{(n+1)}$$, $sup(I) = \kappa$. Pick any ordinal $\lambda \geqslant \kappa$. We shall show that κ is λ - $C^{(n)}$ -superstrong. Let \mathcal{A}_{β} in \mathcal{C} be such that $\lambda < \beta$. Let κ' be such that $\mathcal{A}_{\beta} \in V_{\kappa'}$ and there is a faithful \subseteq -chain-preserving elementary embedding $$\mathfrak{j}:\prod(\mathfrak{C}\cap V_{\kappa})\rightarrow\prod(\mathfrak{C}\cap V_{\kappa'}).$$ $\{a\}.$ Now pick any $\mathcal{A}_{\beta} \in \mathfrak{C} \cap V_{\kappa'}$ and let $$h_\beta:\prod({\mathfrak C}\cap V_{\kappa'})\to {\mathcal A}_\beta$$ be the projection map. Define $k_{\beta}: V_{\kappa+1} \to V_{\beta+1}$ by: $$k_{\beta}(X) = h_{\beta}(\mathfrak{j}(\{X \cap V_{\alpha}\}_{\alpha \in I})).$$ For each $\alpha \in [\beta]^{<\omega}$, define E_{α}^{β} by $$X \in E_{\alpha}^{\beta}$$ iff $X \subseteq [\kappa]^{|\alpha|}$ and $\alpha \in k_{\beta}(X)$. Then E_{α}^{β} is an ω_1 -complete proper ultrafilter over $[\kappa]^{|\alpha|}$. Hence the ultrapower $Ult(V, E_{\alpha}^{\beta})$ is well-founded. Furthermore, since j is faithful, if $\beta \in I$, then E_{α}^{β} is the principal ultrafilter generated by Let $\mathcal{E}_{\beta} := \{ \mathsf{E}_{\alpha}^{\beta} : \alpha \in [\beta]^{<\omega} \}$. One can show that \mathcal{E}_{β} is normal and coherent. Let $M_{\mathcal{E}_{\mathfrak{G}}}$ be the direct limit of $$\langle\langle M_{\mathfrak{a}}^{\beta}: \mathfrak{a} \in [\beta]^{<\omega} \rangle$$, $\langle \mathfrak{i}_{\mathfrak{a}\mathfrak{b}}^{\beta}: \mathfrak{a} \subseteq \mathfrak{b} \rangle \rangle$ where the $i_{\alpha b}^{\beta}$ are the standard projection maps, and let $j_{\mathcal{E}_{\beta}}: V \to M_{\mathcal{E}_{\beta}}$ be the corresponding limit elementary embedding. One can show that $M_{\mathcal{E}_{\alpha}}$ is well-founded. So, let $\pi_{\beta}: M_{\mathcal{E}_{\alpha}} \to N_{\beta}$ One can show that $M_{\mathcal{E}_{\beta}}$ is well-founded. So, let $\pi_{\beta}:M_{\mathcal{E}_{\beta}}\to N_{\beta}$ be the transitive collapse, and let $j_{N_{\beta}}=\pi\circ j_{\mathcal{E}_{\beta}}:V\to N_{\beta}$. Moreover, $V_{\beta} \subseteq N_{\beta}$ and $j_{N_{\beta}}(\kappa) \geqslant \beta$. Note that if $\beta > \kappa$, then this implies that $crit(j_{N_{\beta}}) \leqslant \kappa$. If $\beta \leqslant \beta'$ are in $I' := \{\alpha : \mathcal{A}_{\alpha} \in V_{\kappa'}\}$, then $E_{\alpha}^{\beta} = E_{\alpha}^{\beta'}$, for every $\alpha \in [\beta]^{<\omega}$ (this uses that j is \subseteq -chain preserving!). Hence, for every $\beta < \beta'$ in I', the map $$k_{\beta,\beta'}:M_{\mathcal{E}_\beta}\to M_{\mathcal{E}_{\beta'}}$$ given by $$k_{\beta,\beta'}([\mathfrak{a},[f]_{\mathsf{E}_{\mathfrak{a}}}]_{\mathcal{E}_{\beta}}) = [\mathfrak{a},[f]_{\mathsf{E}_{\mathfrak{a}}}]_{\mathcal{E}_{\beta'}}$$ is well-defined, elementary, and commutes with the embeddings $j_{\mathcal{E}_{\beta}}:V\to M_{\mathcal{E}_{\beta}}$ and $j_{\mathcal{E}_{\beta'}}:V\to M_{\mathcal{E}_{\beta'}}.$ Let M be the direct limit of $$\langle\langle M_{\mathcal{E}_{\beta}} : \beta \in I' \rangle, \langle k_{\beta,\beta'} : \beta < \beta' \text{ in } I' \rangle \rangle$$ and let $j_M:V\to M$ be the corresponding limit elementary embedding. Let $\pi^M:M\to N$ be the transitive collapse, and let $j_N=\pi^M\circ j_M:V\to N$. that $V_{\xi} \subseteq \mathbb{N}$. as wanted. Let $\xi = \sup(I')$. Note that $\xi \in C^{(n)}$ and $\xi > \kappa$. Then one shows $j_N(\kappa) = \xi$, hence $crit(j_N) \leqslant \kappa$. But since for $\beta \in I$ the map j_{N_β} is the identity, $crit(j_N) = \kappa$. Also, since $V_{\xi} = \bigcup_{\beta \in I} V_{\beta}$, and $V_{\beta} \subseteq N_{\beta}$ for all $\beta \in I$, it follows This shows that κ is ξ -superstrong, hence also λ - $C^{(n)}$ -superstrong, ### Theorem For every $n \ge 1$, the following are equivalent for any cardinal κ : - 1. κ witnesses Π_n -SPSR - 2. κ is a $C^{(n)}$ -globally superstrong cardinal. # The Globally Superstrong Hierarchy Table 3⁶ | Complexity | SPSR | |--------------------------|--| | Σ_1 | ZFC | | Π_1 , Σ_2 | Globally Superstrong | | Π_2 , Σ_3 | $C^{(2)}$ -Globally Superstrong | | Π_3 , Σ_4 | $C^{(3)}$ -Globally Superstrong | | : | : | | Π_n , Σ_{n+1} | $C^{(n)}$ -Globally Superstrong | | : | ÷: | | Π_n , all n | $C^{(n)}$ -Globally Superstrong, all n | ⁶J. Bagaria. Large Cardinals as Principles of Structural Reflection. *Preprint*. # Beyond Vopěnka's Principle Joint ongoing work with Philipp Lücke⁷ ⁷Huge Reflection. Preprint available soon. #### Exact SR #### Definition Let ${\mathcal C}$ be a class of structures of the same type. - 1. Given infinite cardinals $\lambda > \kappa$, let $\mathsf{ESR}_{\mathfrak{C}}(\kappa, \lambda)$ be the assertion that for every $A \in \mathfrak{C}$ of rank λ there exists some $B \in \mathfrak{C}$ of rank κ and an elementary embedding form B into A. - 2. Let UESR_C(κ)⁸ assert that ESR_C(κ , λ) holds for a proper class of cardinals $\lambda > \kappa$. - 3. Given a definability class Γ and a class P, let $\Gamma(P)\text{-ESR}(\kappa,\lambda)$ be the statement asserting that $\mathsf{ESR}_{\mathcal{C}}(\kappa,\lambda)$ holds for every class $\mathcal C$ of structures of the same type that is Γ -definable with parameters in P. We shall write $\Gamma(P)^{ic}$ -ESR (κ,λ) and $\Gamma(P)^{ic}$ -UESR (κ) for the statements $\Gamma(P)$ -ESR (κ,λ) and $\Gamma(P)$ -UESR (κ) , respectively, restricted to classes $\mathcal C$ that are Γ -definable with parameters in P and are closed under isomorphic copies. ⁸The "U" is for "Unbounded". ### Exact SR #### **Fact** Let $\kappa < \lambda$ be inaccessible cardinals and let $\mathfrak C$ be a class of structures of the same type that is closed under isomorphic copies. Then $\mathsf{ESR}_{\mathfrak C}(\kappa,\lambda)$ holds if and only if for every structure $B \in \mathfrak C$ of cardinality λ , there exists an elementary embedding of a structure $A \in \mathfrak C$ of cardinality κ into B. #### Exact SR ### Proposition If $\mathfrak C$ is a class of structures of the same type that is closed under isomorphic copies and is definable by a Σ_1 -formula with parameter z, then $\mathsf{ESR}_{\mathfrak C}(\kappa,\lambda)$ holds for all uncountable cardinals $\kappa<\lambda$ with $\mathsf{cof}\,\kappa\leqslant\mathsf{cof}\,\lambda$ and such that $z\in V_\kappa$. In particular, if κ is an uncountable cardinal, then $\Sigma_1(V_\kappa)^{\mathsf{ic}}$ -UESR $_{\mathfrak C}(\kappa)$ holds. #### Lemma If there are uncountable cardinals $\kappa < \lambda$ with the property that $\mathsf{ESR}_{\mathfrak{C}}(\kappa,\lambda)$ holds for every class \mathfrak{C} of structures of the same type that is definable by a Σ_0 -formula without parameters, then $\alpha^\#$ exists for every real α . #### Lemma If δ is a Ramsey cardinal, then the set of inaccessible cardinals $\kappa<\delta$ with the property that $\Sigma_1(V_\kappa)\text{-ESR}(\kappa)$ holds in V_δ is unbounded in $\delta.$ #### Exact cardinals #### **Definition** - 1. Given cardinals $\kappa < \lambda$ and $n < \omega$, the cardinal κ is n-exact for λ if for every $A \in V_{\lambda+1}$, there exist $\kappa' \in C^{(n)}$ greater than κ , $\lambda' \in C^{(n+1)}$ greater than λ , $X \preceq V_{\kappa'}$ with $V_{\kappa} \cup \{\kappa\} \subseteq X$, and an elementary embedding $j: X \to V_{\lambda'}$ with $j(\kappa) = \lambda$ and $A \in \text{ran}(j)$. If we further require that $j(\text{crit}j) = \kappa$ holds, then we say that κ is parametrically n-exact for λ . - 2. A cardinal κ is n-exact (respectively, parametrically n-exact) if it is n-exact (respectively, parametrically n-exact) for a proper class of cardinals λ . #### Theorem ### The following are equivalent: - 1. κ is the least n-exact cardinal for λ . - 1. K is the least n-exact cardinal for Λ . - κ is the least parametrically n-exact cardinal for λ. κ is the least cardinal for which Σ_{n+1}-ESR(κ, λ) holds. # Huge Reflection Recall that a cardinal κ is *huge* if there exists an elementary embedding $j:V\to M$, with M transitive, such that $\kappa={\sf crit}(j)$ and $j(\kappa)M\subset M$. Also, recall that a cardinal κ is almost huge if there exists an elementary embedding $j:V\to M,$ with M transitive, such that $\kappa=\text{crit}(j)$ and ${}^{\gamma}M\subseteq M$ for every $\gamma< j(\kappa).$ ## Huge Reflection #### **Theorem** If κ is a huge cardinal, witnessed by j, then κ is parametrically n-exact for $j(\kappa)$, for every n. Hence, $\mathsf{ESR}_{\mathfrak{C}}(\kappa,j(\kappa))$ holds for all classes \mathfrak{C} of structures of the same type that are definable with parameters in V_{κ} . ### Corollary If κ is superhuge, then κ is n-parametrically exact, for every n. Hence, UESR_{\mathbb{C}}(\kappa) holds for all classes of structures \mathbb{C} of the same type that are definable with parameters in V_{κ} . #### **Theorem** If κ is parametrically 0-exact for λ , then κ is almost-huge with target λ . Moreover, the set of almost-huge cardinals with target κ is stationary in κ , and the set of almost-huge cardinals with target λ is stationary in λ . Congratulations!