様相論理入門第2回

佐野 勝彦 北陸先端科学技術大学院大学 情報科学研究科 v-sano@jaist.ac.jp

2015年8月19日(水)

本日の講義内容

- 濾過法による有限フレーム性と決定可能性
- 双模倣・生成部分モデル・p-モルフィズム
- S4.2 と GL の有限フレーム性

推移的閉包

 $R, R' \subseteq W \times W$.

- ▶ 合成: $R \circ R' := \{ (w,v) \mid$ あるuに対し $wRu \& uRv \}$
- ト R^n $(n \in \omega)$ を帰納的に定義: $R^0 = \{(w, w) | w \in W\}$,

$$R^1 := R$$

$$R^{n+1} := R^n \circ R$$

▶ R の推移的閉包 R⁺, 反射推移的閉包 R* は

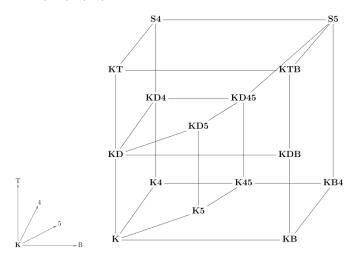
$$R^+ := \bigcup_{n \ge 1} R^n, \qquad R^* := \bigcup_{n \ge 0} R^n$$

と定める。

決定可能性

正規様相論理 Λ が<mark>決定可能 $\stackrel{\text{def}}{\Longleftrightarrow}$ </mark> ある実効的手続き P が存在し : φ を P に入力すると $\varphi \in \Lambda$ のとき 1 を出力し、 $\varphi \notin \Lambda$ のとき 0 を出力する。

T, B, 4, 5, D から定まる正規様相論理



from http://plato.stanford.edu/entries/logic-modal/

有限フレーム性

Λ: 正規様相論理, F: 有限フレームからなるクラス

- $lack \Lambda$ が $\Bbb F$ に対し有限フレーム性 (FFP) をもつ $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ 任意の式 arphi に対し: $\Bbb F \models arphi \Longleftrightarrow arphi \in \Lambda$.

ハロップ (Harrop) の定理

ある有限フレームクラス ℙに対し:

 $\mathbb{F} \models \Sigma$ かつ 任意の式 φ に対し: $ot \vdash_{\mathsf{H}(\mathbf{K}\Sigma)} \varphi \Rightarrow \mathbb{F} \not\models \varphi$.

(定理) 有限の $\Sigma\subseteq \mathsf{Form}$ に対し $\mathbf{K}\Sigma$ が FFP をもつなら $\mathbf{K}\Sigma$ は決定可能。

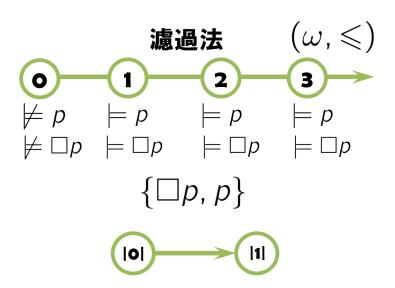
- $(\cdot \cdot)$ $\mathsf{H}(\mathbf{K}\Sigma)$ の定理を枚挙する実効的手続き P が存在
 - ト 入力 φ に対し Σ を妥当にするある有限フレーム F で $F \not\models \varphi$ かをテストする手続き Q を構成:
 - ullet 全有限フレームを(同型除き)枚挙する手続き Q_1
 - ある有限フレームで ψ が妥当かをテストする手続き Q_2 $F_0, F_1, F_2, F_3, F_4, F_5, F_6, \dots$

入力 arphi に対し P と Q を並列実行すればよい。 (証終)

Lemmon Note (1977)

E. J. Lemmon 1930-1966 Dana Scott 1932-

濾過法による有限フレーム性と決定可能性



部分論理式集合

arphi の 部分論理式全体の集合 $\operatorname{Sub}(arphi)$ を以下のように定義:

```
\begin{array}{lll} \operatorname{Sub}(p) & := & \{\,p\,\} \\ \operatorname{Sub}(\bot) & := & \{\,\bot\,\} \\ \operatorname{Sub}(\varphi \to \psi) & := & \operatorname{Sub}(\varphi) \cup \operatorname{Sub}(\psi) \cup \{\,\varphi \to \psi\,\} \\ \operatorname{Sub}(\Box\varphi) & := & \operatorname{Sub}(\varphi) \cup \{\,\Box\varphi\,\} \end{array}
```

- $ightharpoonup \Sigma$ が部分論理式に閉じる $\stackrel{\mathrm{def.}}{\Longleftrightarrow} \varphi \in \Sigma$ なら $\mathrm{Sub}(\varphi) \subseteq \Sigma$.
- ▶ Sub(φ) は部分論理式に閉じる

濾過法 (filtration)

M = (W, R, V): モデル, $\Sigma \subseteq$ Form: 部分論理式に閉じる

ightharpoonup W 上の同値関係 $w \sim_{\Sigma} v \stackrel{\text{def.}}{\Longleftrightarrow}$:

全ての $\varphi \in \Sigma$ に対し $(M, w \models \varphi \iff M, v \models \varphi)$

- ▶ w の \sim_{Σ} による同値類 |w| := $\{v \in W \mid w \sim_{\Sigma} v\}$.
- ▶ $W_{\Sigma} := \{ |w| | w \in W \}$

(命題) Σ が有限のとき $\#W_{\Sigma} \leqslant 2^{\#\Sigma}$.

濾過法 (filtration) (続)

M の Σ による<u>濾過</u> $M_{\Sigma}^f := (W_{\Sigma}, R^f, V_{\Sigma})$ は次をみたす:

- ▶ $W_{\Sigma} := \{ |w| | w \in W \}.$
- (i) wRv ならば $|w|R^f|v|$.
- (ii) $|w|R^f|v|$ ならば 全ての $\Box \varphi \in \Sigma$ に対し $(M, w \models \Box \varphi \Rightarrow M, v \models \varphi)$.
 - ▶ $V_{\Sigma}(p) := \{ |w| | w \in V(p) \} (p \in \Sigma).$

濾過定理

$$M = (W, R, V)$$
: モデル, $\Sigma \subseteq Form$: 部分論理式に閉じる

(定理) 任意の $\varphi \in \Sigma$, $w \in W$ に対し:

$$M, w \models \varphi \iff M_{\Sigma}^f, |w| \models \varphi.$$

濾過の例

W_{Σ} 上の関係 \mathbb{R}^{s} と \mathbb{R}^{l} をそれぞれ:

- $ullet |w| R^s |v| \iff$ ある $w' \in |w|$ とある $v' \in |v|$ が存在して w'Rv'.
- $|w|R^l|v| \stackrel{\text{det.}}{\Longleftrightarrow}$ 任意の $\Box \varphi \in \Sigma$ に対し $(M, w \models \Box \varphi \Rightarrow M, v \models \varphi)$.

(命題) R^s , R^l はともに条件 (i), (ii) をみたす

(命題) $M_{\Sigma}^f = (W_{\Sigma}, R^f, V_{\Sigma})$ に対し: $R^s \subseteq R^f \subseteq R^l$.

K の有限フレーム性・決定可能性

ある有限フレームクラス 『に対し:

 $\mathbb{F} \models \mathbf{K}$ かつ 任意の式 φ に対し: $\varphi \notin \mathbf{K} \Rightarrow \mathbb{F} \not\models \varphi$.

(定理) K は全有限フレームクラスに対し FFP をもつ

(.[.].)

- 1. 健全性は ok
- 2. *ϕ* ∉ K と仮定。強完全性より:
- 3. ある (M, w) に対し $M, w \not\models \varphi$.
- 4. 濾過定理より $M^s_{\mathrm{Sub}(\varphi)}, |w| \not\models \varphi$.

(証終)

反射性・継起性・対称性を保つ濾過法

M = (W, R, V): モデル, $\Sigma \subseteq$ Form: 部分論理式に閉じる

(命題) M の Σ による濾過 $M_{\Sigma}^f = (W_{\Sigma}, R^f, V_{\Sigma})$ に対し:

- 1. R が反射的なら R^f も反射的
- 2. R が継起的なら R^f も継起的
- 3. R が対称的なら R^s も対称的

推移性と保つ濾過法

M = (W, R, V): モデル, $\Sigma \subseteq$ Form: 部分論理式に閉じる

▶ 最小の濾過関係 R^s の推移的閉包を R^{s+} とする。

(命題) R が推移的とする。このとき:

- 1. $M^{s+}_{\Sigma}=(W_{\Sigma},R^{s+},V_{\Sigma})$ は M の Σ による濾過
- 2. R が対称的なら R^{s+} も対称的

正規様相論理の有限フレーム性

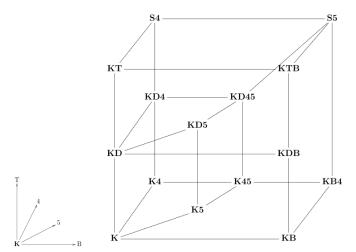
(定理) 全ての $\Delta\subseteq\{T,B,4,D\}$ に対し $\mathbf{K}\Delta$ は FFP をもち、それゆえ決定可能。

(··.)

- 1. K の場合とほぼ同様。ただし:
- 2. $4 \notin \Delta$ のとき R^s を使え
- 3. $4 \in \Delta$ のとき R^{s+} を使え

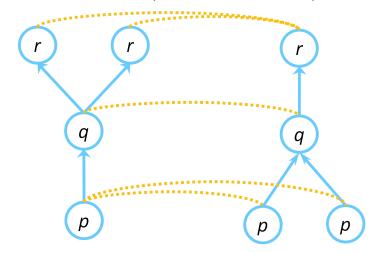
(証終)

T, B, 4, 5, D から定まる正規様相論理



from http://plato.stanford.edu/entries/logic-modal/

双模倣 (bisimulation)



双模倣 (bisimulation)

$$M = (W, R, V), M' = (W', R', V')$$
: モデル

ullet $Z\subseteq W imes W'$ が M と M' の間の 双模倣 $\stackrel{\mathrm{def.}}{\Longleftrightarrow}$ (Atom) wZw' ならば、全 $p\in\mathsf{Prop}$ に対し:

$$w \in V(p) \iff w' \in V'(p).$$

(Forth) wZw' かつ wRv なら ある $v' \in W'$ が存在し (vZv' かつ w'R'v'). (Back) wZw' かつ w'R'v' なら ある $v \in W$ が存在し (vZv' かつ wRv).

 $(M,w) \Leftrightarrow (M',w')$ 「<mark>双模倣的</mark>」 $\stackrel{\text{def.}}{\Longleftrightarrow}$ $M \succeq M'$ の間の双模倣 Z が存在し wZw'.

双模倣ならば様相同値

 $(M,w) \longleftrightarrow (M',w')$ 「様相同値」 $\stackrel{\text{def.}}{\Longleftrightarrow}$ 全ての $\varphi \in \text{Form}$ に対し $(M,w \models \varphi \iff M',w' \models \varphi)$.

(命題) $Z\subseteq W\times W'$ が M と M' の間の双模倣ならば、任意の式 φ に対し:

$$wZw' \implies (M, w \models \varphi \iff M', w' \models \varphi).$$

それゆえ $(M,w) \Leftrightarrow (M',w')$ ならば $(M,w) \leftrightsquigarrow (M',w')$.

生成部分モデル

$$M = (W, R, V), M' = (W', R', V')$$
: モデル

▶ *M'* が *M* の生成部分モデル ^{def.}

(部分)
$$W' \subseteq W$$
 かつ $R' = R \cap (W' \times W')$
(生成) 全ての $w \in W'$ と $v \in W$ に対し
 wRv なら $v \in W'$.

(Atom)
$$V'(p) = V(p) \cap W'$$
 ($p \in Prop$).

- ullet $w\in W$ のとき M_{ullet} := w を含む最小の生成部分モデル
- ightharpoonup M は 点生成されている $\stackrel{\mathrm{def.}}{\Longleftrightarrow}$

ある
$$w \in W$$
 に対し $M = M_w$.

(命題) M' が M の生成部分モデルのとき $(M',w') \ (w' \in W')$.

p-モルフィズム

$$M = (W, R, V), M' = (W', R', V')$$
: $\exists \vec{\tau} \nu$

▶ $f: W \to W'$ が M から M' への p-モルフィズム $\stackrel{\text{def}}{\Longleftrightarrow} Gr(f) \coloneqq \{ (w, f(w)) | w \in W \}$ が双模倣.

(命題) f が M から M' への p-モルフィズムならば $(M,w) \ {\ensuremath{\leftarrow}}\ (M',f(w)).$

木展開

M = (W, R, V) が w で点生成されているとする。 M の w に関する木展開は $\operatorname{Tree}(M, w) = (\vec{W}, \vec{R}, \vec{V})$:

- $\vec{W} := \{ (w, w_1, \dots, w_n) \mid wRw_1 \& \dots \& w_{n-1}Rw_n \}.$
- $(w, w_1, \dots, w_n) \vec{R}(w, v_1, \dots, v_m) \iff m = n + 1$ かつ $w_i = v_i$ ($1 \le i \le n$)
- $(w, w_1, \dots, w_n) \in \vec{V}(p) \stackrel{\text{def.}}{\iff} w_n \in V(p).$

M の w に関する推移木展開は $\mathrm{Tree}^+(M,w)=(\vec{W},\vec{R}^+,\vec{V}).$

 $ightharpoonup ec{R}^+$ は $ec{R}$ の推移的閉包

木展開 (続)

(命題) $f: \vec{W} \to W$ を $f(w, w_1, \dots, w_n) \coloneqq w_n$ で定める。

- 1. f は Tree(M, w) から M への全射 p-モルフィズム
- 2. (W,R) が推移的ならば f は $\mathrm{Tree}^+(M,w)$ から M への全射 p-モルフィズム

前順序・反対称性・半順序

F = (W, R): フレーム

- ightharpoonup F が前順序 $\stackrel{\text{def.}}{\Longleftrightarrow} F$ が反射的かつ推移的
- F が反対称的 $\stackrel{\text{def.}}{\Longleftrightarrow}$ 任意の $w,v\in W$ に対し $((wRv\ かつ\ vRw)\Rightarrow w=n).$
- ightharpoonup F が半順序 $\stackrel{\mathrm{def.}}{\Longleftrightarrow} F$ が前順序かつ反対称的

スケルトン

▶ 前順序 (W, R) のスケルトンとは W 上の同値関係 ≈:

$$w \approx v \stackrel{\text{def.}}{\Longleftrightarrow} wRv$$
 かつ vRw

による (W,R) の商構造 $(W_{\approx},R_{\approx})$ (半順序に!)

- ullet (W,R) が $extbf{\pi} \stackrel{ ext{def.}}{\Longleftrightarrow} (W,R)$ が半順序、かつ、W の任意の 二元 $\{w,v\}$ が最小上界と最大下界をもつ
- ► (W, R) が<mark>前東</mark> ⇔ (W, R) が前順序、かつ、そのスケルトンが東

S4.2 の有限フレーム性

(命題) 有限の有向前順序のクラスに対し S4.2 は FFP をもつ

(...)

- 1. φ ∉ S4.2. 強完全性より:
- 2. ある有向前順序モデル M のある w で $M, w \not\models \varphi$.
- 3. M の w による生成モデルで $M_w, w \not\models \varphi$.
- 4. $(M_w)^{s+}_{\operatorname{Sub}(\varphi)}, |w| \not\models \varphi$.
- 5. $(M_w)^{s+}_{\mathrm{Sub}(arphi)}$ は有限・前順序モデル・有向的 (証終)

(命題) 有限前束のクラスに対し S4.2 は FFP をもつ

有限フレーム内で L は非反射性かつ推移性を定義

▶ F が非反射的 $\stackrel{\text{def.}}{\Longleftrightarrow}$ 任意の w に対し (wRw でない).

(命題) 有限フレーム
$$F = (W, R)$$
 に対し

$$F \models \Box(\Box p \rightarrow p) \rightarrow \Box p \iff R$$
 が推移的&非反射的

(命題)
$$\Box p \to \Box \Box p \in \mathbf{GL}$$
.

GL-カノニカルモデルの濾過

 $\Lambda:=\mathbf{GL}, \Sigma:=\mathrm{Sub}(\varphi)$ とおく。 Λ -カノニカルモデル $M^{\Lambda}=(W^{\Lambda},R^{\Lambda},V^{\Lambda})$ に対し W^{Λ} の \sim_{Σ} による商集合 W^{Λ} 上に関係 R^{g} を次のように定義:

$$|\Gamma|R^g|\Delta| \stackrel{\text{def.}}{\Longleftrightarrow}$$

- $\left\{ egin{aligned} 1)$ 全ての $\Box \psi \in \Sigma$ に対し $(\Box \psi \in \Gamma \Rightarrow \psi \wedge \Box \psi \in \Delta), \$ かつ 2) ある $\Box \gamma \in \Sigma$ に対し $(\Box \gamma \notin \Gamma \& \Box \gamma \in \Delta). \end{aligned} \right.$
- このとき $(M_{\Sigma}^{\Lambda})^g=(W_{\Sigma}^{\Lambda},R^g,V_{\Sigma}^{\Lambda})$ とおく。

(補題) R^g は推移的かつ非反射的、 $(M_{\Sigma}^{\Lambda})^g$ は有限。

GL-カノニカルモデルの濾過 (続)

$$\Lambda := \mathbf{GL}, \Sigma := \mathbf{Sub}(\varphi) とおく。$$

(補題) 任意の $\psi \in \Sigma$, 任意の極大 Λ -無矛盾な Γ に対し:

$$(M_{\Sigma}^{\Lambda})^g, |\Gamma| \models \psi \iff \psi \in \Gamma.$$

GL の有限フレーム性

(定理) GL は非反射的かつ推移的な有限フレームからなるクラスに対し FFP をもつ、ゆえに決定可能。

- ∵ Λ := GL とおく。
 - 1. φ が Λ-無矛盾とする。
 - 2. リンデンバウム補題より Λ -MCS $\Gamma \ni \varphi$ が存在
 - 3. $\Sigma := \operatorname{Sub}(\varphi)$ に対し $(M_{\Sigma}^{\Lambda})^g, |\Gamma| \models \varphi$.
 - 4. $(M_{\Sigma}^{\Lambda})^g$ は有限・非反射的・推移的 (証終)

GL の有限フレーム性 (続)

(定理) GL は有限推移木のクラスに対し FFP をもつ。

- $...\Lambda := GL \ \ \geq \ \ \, t$
 - 1. φ が Λ -無矛盾とする。前定理より:
 - 2. ある非反射 & 推移的有限モデル M のある w で $M, w \models \varphi$.
 - 3. w による生成部分モデルで $M_w, w \models \varphi$.
 - 4. 推移木展開をとって Tree⁺ $(M_w, w), w \models \varphi$.
 - 5. $\operatorname{Tree}^+(M_w,w)$ は非反射的なので有限。 (証終)