様相論理入門第1回

佐野 勝彦 北陸先端科学技術大学院大学 情報科学研究科 v-sano@jaist.ac.jp

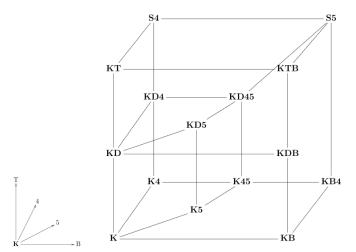
2015年8月18日(火)

本日の講義内容

■ 構文論・意味論・フレーム定義可能性

- 正規様相論理
- 正規様相論理の強完全性証明

T,B,4,5,D から定まる正規様相論理



from http://plato.stanford.edu/entries/logic-modal/

様相論理の言語

命題変数の可算集合 Prop から論理式の全集合を定義:

Form
$$\ni \varphi ::= p \mid \bot \mid \varphi \to \varphi \mid \Box \varphi$$
 $(p \in \mathsf{Prop})$

Γ , Δ , Σ など: 論理式の集合

クリプキフレーム

(クリプキ) フレームはペアF := (W,R)で:

- ► W ≠ Ø (世界・状況 の集合)
- $ightharpoonup R \subseteq W \times W$ (到達可能性・遷移関係)

フレームクラス (R の性質)		
反射性	$\forall w (wRw)$	
対称性	$\forall w, v (wRv \Rightarrow vRw)$	
推移性	$\forall w, v, u ((wRv かつ vRu) \Rightarrow wRu)$	
ユークリッド性	$\forall w, v, u ((wRv かつ wRu) \Rightarrow vRu)$	
継起性	$\forall w \exists v (wRv)$	

- ightharpoonup R が同値関係 $\stackrel{\text{def.}}{\Longleftrightarrow} R$ が反射・推移・対称的
- ▶ フレームのクラスは F, G などで表す

クリプキモデル

(クリプキ) モデルはペア M := (F, V) で:

- ► *F* = (*W*, *R*) はフレーム
- ▶ $V : \mathsf{Prop} \to \wp(W)$ は付値関数 ($\wp(W)$ は W の冪集合)

 $V(p) \subseteq W$: 「p が成立する世界の集合」

クリプキ意味論

充足関係 $M, w \models \varphi \neg \varphi$ は M の w で真(成立)」:

$$M,w \models p \iff w \in V(p),$$
 $M,w \not\models \bot,$ $M,w \models \varphi \rightarrow \psi \iff M,w \not\models \varphi$ あるいは $M,w \models \psi$ $M,w \models \Box \varphi \iff$ 任意の v に対し $(wRv \$ ならば $M,v \models \varphi)$

定義記号:

$$M,w \models \neg \varphi \iff M,w \not\models \varphi,$$
 $M,w \models \varphi \land \psi \iff M,w \models \varphi$ かつ $M,w \models \psi,$ $M,w \models \Diamond \varphi \iff$ ある v に対し $(wRv$ かつ $M,v \models \varphi).$

構文論・意味論・フレーム定義可能性

妥当性

F: フレーム, M: モデル, \mathbb{F} : フレームクラス

- ▶ $M, w \models \Gamma \stackrel{\text{def.}}{\Longleftrightarrow} 全ての \varphi \in \Gamma に対し M, w \models \varphi$.
- $ullet M \models \Gamma$ 「 Γ が M で妥当」 $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ 全ての w に対し $M, w \models \Gamma$.
- ト $F \models \Gamma$ 「 Γ が F で妥当」 $\stackrel{\text{def.}}{\Longleftrightarrow} F$ 上の全ての付値 V に対し $(F,V) \models \Gamma$.
- $lackbox{\mathbb{F}} \models \Gamma$ 「 Γ が \mathbb{F} で妥当」 $\stackrel{\mathrm{def.}}{\Longleftrightarrow}$ 全てのフレーム $F \in \mathbb{F}$ に対し $F \models \Gamma$.

(命題) 任意のフレーム F で $F \models \Box(p \to q) \to (\Box p \to \Box q).$

フレーム定義可能性とその例

ℙ: フレームクラス

 $ightharpoonup \Gamma$ が ightharpoonup を定義 $\stackrel{\text{def.}}{\Longleftrightarrow}$ 任意のフレーム F に対し:

$$F \models \Gamma \iff F \in \mathbb{F}$$

	論理式	フレームクラス (R の性質)
Т	$\Box p \to p$	R の反射性
В	$p \to \Box \Diamond p$	R の対称性
4	$\Box p \to \Box \Box p$	R の推移性
5	$\Diamond p \to \Box \Diamond p \text{ or } \neg \Box p \to \Box \neg \Box p$	<i>R</i> のユークリッド性
D	$\Box p \to \Diamond p \text{ or } \neg \Box \bot$	R の継起性

フレーム定義可能性とその例(続)

	論理式	フレームクラス (フレームの性質)
.2	$\Diamond \Box p \to \Box \Diamond p$	<i>R</i> の有向性
L	$\Box(\Box p \to p) \to \Box p$	R は推移的 & R -無限上昇列がない

- ト R の有向性: $\forall w, v, u((wRv \text{ かつ } wRu) \Rightarrow \exists s(vRs \text{ かつ } uRs)).$
- F が R-無限上昇列をもつ $\stackrel{\mathrm{def.}}{\Longleftrightarrow}$ $x_n R x_{n+1} \ (n \in \omega)$ となる列 $(w_n)_{n \in \omega}$ が存在.

ヒルベルト式公理系 H(K)

公理

Taut 命題トートロジー
K
$$\Box(p \to q) \to (\Box p \to \Box q)$$

推論規則

MP φ と $\varphi \rightarrow \psi$ から ψ を導く 一様代入則 (US) φ からその一様代入例を導く 必然化則 (Nec) φ から $\square \varphi$ を導く

▶ ψ が $\mathsf{H}(\mathbf{K})$ の定理 ($\vdash_{\mathsf{H}(\mathbf{K})} \psi$ と表記) \iff 式のリスト $\varphi_1, \ldots, \varphi_n$ が存在し : φ_i は公理か、それ以前の式から推論規則で導かれており (i > 1), $\varphi_n = \psi$.

例: H(K) の体系内定理

1.
$$(p \land q) \rightarrow p$$

2.
$$(\varphi \wedge \psi) \rightarrow \varphi$$

3.
$$\Box((\varphi \wedge \psi) \rightarrow \varphi)$$

4.
$$\Box(p \to q) \to (\Box p \to \Box q)$$

5.
$$\Box(\varphi \land \psi \to \varphi) \to (\Box(\varphi \land \psi) \to \Box\varphi)$$

6.
$$\Box(\varphi \wedge \psi) \rightarrow \Box\varphi$$

Taut

1, 一様代入則

2, 必然化則

K

4, 一様代入則

3, 5, MP

同様に
$$\vdash_{\mathsf{H}(\mathbf{K})} \Box(\varphi \land \psi) \rightarrow \Box \psi$$
. よって

$$\vdash_{\mathsf{H}(\mathbf{K})} \Box(\varphi \land \psi) \to (\Box \varphi \land \Box \psi)$$

正規様相論理

 $\Lambda\subseteq \mathsf{Form}$ が正規様相論理 $\overset{\mathrm{def.}}{\Longleftrightarrow}$

 Λ は $\mathsf{H}(\mathbf{K})$ の全公理を含み、 $\mathsf{H}(\mathbf{K})$ の全推論規則に閉じる

 $\mathbf{K}\Sigma := \Sigma$ を含む最小の正規様相論理

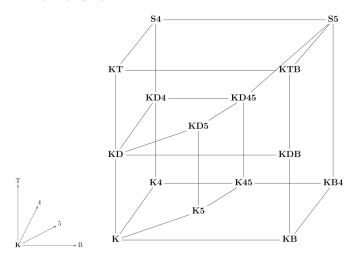
- ► H(K∑): H(K) に追加公理群 ∑ を加えた系
- ▶ H(K∑) の体系内定理の全集合と K∑ は一致。
- ▶ Λ が正規様相論理のとき: $\varphi \in \Lambda$ を $\vdash_{\Lambda} \varphi$ とも書く。
- ▶ どの正規様相論理 Λ に対しても:

 $\vdash_{\Lambda} \Box(\varphi \land \psi) \leftrightarrow (\Box \varphi \land \Box \psi).$

「有名」な正規様相論理

```
egin{array}{lll} \mathbf{K} &:= & \mathbf{B}小の正規様相論理 \mathbf{S4} &:= & \mathbf{K} \{ \, \mathrm{T}, 4 \, \} \ \mathbf{S5} &:= & \mathbf{K} \{ \, \mathrm{T}, 4, \mathrm{B} \, \} \ \mathbf{S4.2} &:= & \mathbf{K} \{ \, \mathrm{T}, 4, .2 \, \} \ \mathbf{GL} &:= & \mathbf{K} \{ \, \mathrm{L} \, \} \end{array}
```

T, B, 4, 5, D から定まる正規様相論理



from http://plato.stanford.edu/entries/logic-modal/

正規様相論理の健全性

(定理) 任意の $\Sigma \subseteq \{T, B, 4, 5, D, .2\}$ に対し $K\Sigma$ は Σ が 定義するフレームクラス \mathbb{F}_{Σ} に対して健全。

正規様相論理の健全性

(系) 任意の $\Sigma \subseteq \{T, B, 4, 5, D, .2\}$ に対し $\bot \notin \mathbf{K}\Sigma$.

 (\cdot,\cdot) \mathbb{F}_{Σ} : Σ が定義するフレームクラス

$$\bot \in \mathbf{K}\Sigma \implies \mathbb{F}_{\Sigma} \models \bot$$

導出・帰結・(強・弱)完全性

Λ: 正規様相論理, F: フレームクラス

- $lack \Lambda$ が $\Bbb F$ に対し<mark>弱完全 \Longleftrightarrow 任意の arphi に対し $\Bbb F \models arphi$ ならば $arphi \in \Lambda$.</mark>
- ▶ 導出関係 $\Gamma \vdash_{\Lambda} \varphi \stackrel{\text{def.}}{\Longleftrightarrow}$ ある有限集合 $\Delta \subseteq \Gamma$ に対し $\bigwedge \Delta \rightarrow \varphi \in \Lambda$ ($\bigwedge \varnothing := \top$).
- ト 帰結関係 $\Gamma \models_{\mathbb{F}} \varphi \stackrel{\text{def.}}{\Longleftrightarrow}$ 任意の $F \in \mathbb{F}$, 任意の $F \perp$ 上の付値 V, 任意の w に対し: $(F,V), w \models \Gamma$ ならば $(F,V), w \models \varphi$.
- ▶ Λ が \mathbb{F} に対し<mark>強完全</mark> \iff 任意の $\Gamma \cup \{\varphi\} \subseteq \mathsf{Form}$ に対し : $\Gamma \models_{\mathbb{F}} \varphi$ ならば $\Gamma \vdash_{\Lambda} \varphi$

無矛盾・充足可能

 Λ : 正規様相論理, \mathbb{F} : フレームクラス, F: フレーム

- $ightharpoonup \Gamma$ が Λ -矛盾 $\stackrel{\text{def.}}{\Longleftrightarrow}$ $\Gamma \vdash_{\Lambda} \bot$.
- ight
 ight
 ight
 ho Γ が Λ -無矛盾 $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ Γ が Λ -矛盾でない, i.e. $\Gamma \not\vdash_{\Lambda} \bot$
- $ightharpoonup \Gamma$ が F で <mark>充足可能</mark> $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ F 上のある付値 V とある w に対し $(F,V),w \models \Gamma$.
- $lacksymbol{\Gamma}$ Γ が $\mathbb F$ で $rac{\hat{\mathbf{n}}$ で充足可能 F に対し Γ が F で充足可能

(命題) Λ が $\mathbb F$ に対し強完全 \Longleftrightarrow 任意の Λ -無矛盾な Γ が $\mathbb F$ で充足可能。

極大無矛盾集合の性質

Λ: 正規様相論理

 Γ が 極大 Λ -無矛盾 (Λ -MCS) $\stackrel{\text{def.}}{\Longleftrightarrow}$ Γ が Λ -無矛盾、かつ、任意の式 φ に対し $\varphi \in \Gamma$ あるいは $\neg \varphi \in \Gamma$.

(命題) Γ を Λ -MCS とする。

- **1.** $\Lambda \subset \Gamma$.
- **2.** $\Gamma \vdash_{\Lambda} \varphi \iff \varphi \in \Gamma$.
- 3. $(\varphi \in \Gamma \text{ bol} \vdash_{\Lambda} \varphi \rightarrow \psi)$ $\varphi \in \Gamma$.
- **4**. $\neg \varphi \in \Gamma \iff \varphi \notin \Gamma$.
- 5. $\varphi \to \psi \in \Gamma \iff \varphi \notin \Gamma$ あるいは $\psi \in \Gamma$.
- 6. $\varphi \wedge \psi \in \Gamma \iff \varphi \in \Gamma$ かつ $\psi \in \Gamma$.

リンデンバウム補題

(補題) Λ を正規様相論理とする。任意の Λ -無矛盾な Γ に対し Λ -MCS Γ^+ が存在し $\Gamma \subset \Gamma^+$.

Lemmon Note (1977)

E. J. Lemmon 1930-1966 Dana Scott 1932-

カノニカルモデル

Λ: 正規様相論理

$$W^{\Lambda}$$
 := $\{\Gamma \mid \Gamma \text{ it } \Lambda\text{-MCS }\}$ $\Gamma R^{\Lambda} \Sigma \iff \text{任意の式} \varphi \text{ it 対し } (\Box \varphi \in \Gamma \Rightarrow \varphi \in \Sigma)$ $\Gamma \in V^{\Lambda}(p) \iff p \in \Gamma$

(命題)
$$\Gamma R^{\Lambda} \Sigma$$
 \iff 任意の式 φ に対し ($\varphi \in \Sigma \Rightarrow \Diamond \varphi \in \Gamma$).

真理補題

Λ: 正規様相論理

(真理補題) 任意の式 φ と任意の Λ -MCS Γ に対し

$$M^{\Lambda}, \Gamma \models \varphi \iff \varphi \in \Gamma.$$

真理補題のための補題

(補題) Γ を Λ -MCS とする。 $\square \psi \notin \Gamma$ ならば $\{ \neg \psi \} \cup \{ \gamma | \square \gamma \in \Gamma \}$ は Λ -無矛盾.

追加公理とカノニカルモデル

Λ:正規様相論理

(補題)

- 1. $T \in \Lambda$ のとき R^{Λ} は反射的
- 2. $B \in \Lambda$ のとき R^{Λ} は対称的
- 3. $D \in \Lambda$ のとき R^{Λ} は継起的
- 4. $4 \in \Lambda$ のとき R^{Λ} は推移的
- 5. $5 \in \Lambda$ のとき R^{Λ} はユークリッド的

追加公理とカノニカルモデル (続)

Λ:正規様相論理

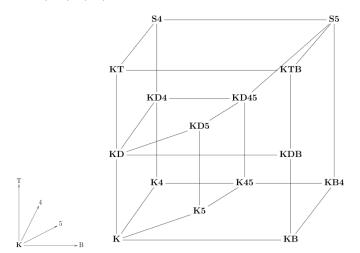
(補題) $.2 \in \Lambda$ のとき R^{Λ} は有向的.

正規様相論理の強完全性証明

(定理) 任意の $\Sigma \subseteq \{T, B, 4, 5, D, .2\}$ に対し $\mathbf{K}\Sigma$ は Σ が 定義するフレームクラス \mathbb{F}_{Σ} に対して強完全。

- $(::) \Lambda := K\Sigma とおく。$
 - **1.** Γ が Λ-無矛盾とする。
 - 2. リンデンバウム補題より Λ-MCS $\Gamma^+ \supset \Gamma$ が存在。
 - 3. 真理補題より M^{Λ} , $\Gamma^{+} \models \Gamma$.
 - 4. M^{Λ} のフレーム部分は追加公理に関する補題群より Σ の定義するフレームクラス \mathbb{F}_{Σ} に属す (証終)

T, B, 4, 5, D から定まる正規様相論理



from http://plato.stanford.edu/entries/logic-modal/