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Part |: Informal Part

Ex ante decision making in a game
e Asituation is interdependent
e decision making is Individualistic and Independent.

Q1: What are possible decisions?
Q2: Does he, in the first place, reach a decision?

Nash (1951) solution theory NE=

#1 PDis solvable #2 BSis unsolvable

521 522 SZl 522
S11 5 ,5 1, 6 S11 21 1 01 0
512 6, 1 3, 3 S12 0,0 1, 2

* How do we evaluate the above Q1 and Q27




Structure of game theoretical decision making

A: Basic beliefs T C: decision and prediction

B: logical inference

A: 1 Understanding of the situation — beliefs about the game
: 2 Decision/prediction criterion — how he and the other
make decision.
B: Logical abilities of the players
C: possible decisions and predictions

Q2(Does he, in the first place, reach a decision?)
is relevant under the consistency of beliefs in A.




A: Basic beliefs

T

C: decision and/or prediction

B: logical inference

 Parallelism to the Axiomatic method in Mathematics.

A: Basic axioms

?

C: lemmas and theorems

B: logical inference

We may recall Godel’s incompleteness theorem.

Recall Q2: Does he, in the first place, reach a decision?




Godel’s incompleteness theorem: Limitation on logical thinking

 Godel’s incompleteness theorem: Assuming the consistency of
PA (Peano arithmetic), there is some (closed) formula A4 in PA
such that

(*) neither PAFA nor PAF =4,
- formula A is neither provable nor its negation is provable in PA.
 PA =the natural number theory in classical predicate logic
e An example of A is the formula expressing “consistency” of PA .

(*) can be viewed as a statement on the ideal mathematician.

If a game player is an ideal mathematician to make a decision,
does he possibly have a similar difficulty?

Yes, he does, yet for a different but natural reason!




Individual Player’s Inference 5

B;i(I;) + B;i(4);
1: I - - playeri’s beliefs - a finite set of (symbolic) sentences

2: A --his deduced consequence from [3;
3: I - - provability: existence of a proof in the logic EIR? .

1: I - playeri’s beliefs
— understanding of the game situation; preferences, etc.
— Prediction/decision criterion;
e.g., dominant strategy criterion, but here, Nash theory!
2: A - his decision deduced from Ij;
3: I} may include false beliefs, relative to the objective
situation.

We take a specific set A;(g) of assumptions for as B;(I;).




Choice of A;(g): Nash (1951) theory

Decision (prediction) criterion:

Nay: PL1 should choose a best response against all of his
predictions about PL2’s decisions based on Na,:

Na,: PL2 should choose a best response against all of his
predictions about PL1’s decisions base on Na;.

Infinite Regress: PL1’s inference for decision making:
B;(Na,;) = B;B,(Na;) 2 B;B;B;(Na;) > ---

* Nash (1951) gave interchangeablity on the set of NE’s E(G):
E(G) = E(G); XE(G), (Productform)
e |f G satisfies this condition, the game is solvable; and otherwise, it is
unsolvable.

e “Nash equilibrium” should be distinguished from Nash theory; it is a
component of Nash theory.




A;(g) is the set of basic beliefs

1. Infinite regress of Na; and Naj;
B;(Na;), B;B;(Na;), B;B;B;(Na;), -
2. Infinite regress of g; and g;;

B;(g:), BiB;j(g;), B;B;B;(g,),
3. The axiom choosing the logically weakest formulae

Two cases on g = (g4, g») are crucial: solvable and unsolvable.

. PD BS
S21 S92 S21 S22
S11 5,5 1, 6 S11 2,1 0, 0

S13 6, 1 3, 3 S12 0, 0 1, 2




Decidability Theorem 8

* Lemma: 4;(g) is consistent.

Decidability: Let g be a solvable game. Then, for any strategy s; € §;,
either Aj(g) + B;(1;(sy)) or Ai(g) F Bi(—I;(s)).

e I;(s;) intends to mean “s; is a possible decision for i.
o A;(g) FBi(I;(s;)) - - “i deduces s; to be a possible decision”.

« Ai(g) F Bi(—l;(sy)) - - “i deduces s; not to be a possible decision”.

Matching Pennies: No NE’s

S21 S22
S11 1 , -1 -1, 1
S12 '1, 1 1, -1

S11 55| 1, 6




Undecidability Theorem

Undecidablity: Let g be an unsolvable game. Then, for some strategy
Si (S Si'

neither Al(g) = Bi(li(si)) nor Al(g) = Bi(_'li(si))'

— In the BS game, undecidability holds for either strategy.

S21 S22
S11 2,1 0, O
S12 O, 0 1, 2

Undecidablity on predictions: Let g be an unsolvable game. Then, for
some strategy s; € 5;,

neither A;(g) + B,;Bj(lj(sj)) nor A;(g) FB;B; (_Ilj(Sj)).




Bridge between the Formalized and non-formalized theories

e E(G)is athe set of NE’s.

 Asubset F of E(G) is called a subsolution iff F is a maximal
subset of E (G) satisfying interchangeability.

Let F1, ..., F¥ be the list of subsolutions of game G.
Then, Al(g) - Bi(li(si)) — S; € Ftforallt = 1,.., k.

< p S21 S22
21 22 si1 | [T, 1 0, 1
BS S11 2,1 0, O
51y 0, 0 1 2 S12 1, O 0,0

e BS has two subsolutions {(s11, S21)} and {(512,522)}

e The 2" game also has two: {(s11,521), (S12,521)} and
{(s11,521), (511, S22)}; they have an intersection {(s11,521)}.
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Godel’s incompleteness theorem

PAw¥ A nor PAW —A
PA: Peano Arithmetic;
I : the provability relation of classical predicate logic;
PA is assumed to be consistent;
e Ais, e.g., “consistency” of PA.

Ours
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if g is solvable , either A;(g) F B;(I;(s;)) or A;(g) |_Bi(_IIi(Si)).
if g is unsolvable, A;(g) # B;i(I;(s;)) and A;(g) W Bi(_lli(Si)).
o A;(g): beliefs described previously;
e |- : provability relation of (propositional) Epistemic Infinite-
Regress Logic EIR?;
* A;(g) is proved to be consistent;
e I;(s;)is expressed as
— “Nash strategy” if g is solvable;
— no game formula if g is unsolvable.




Axiom T and Common knowledge of a Nash strategy

 Let G be asolvable game.
e If we add Axiom T (truthfulness): B;(4) D A to our logic,
then we have

2: Al(g) - Ii(Si) = th C[Nash(si; t])]
- - it is a Nash strategy with common-knowledge.
3: Our undecidability result is obtained in this case.

4: if g is solvable, the theory (EIR?*(T), A;(g)) is complete;
if g is unsolvable, the theory is incomplete.

€ However, we should not include Axiom T for various reasons.
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Two projects: Inductive Game Theory and Epistemic Logic

B (I;) + B;(4);

0: I - - player i’s beliefs

1: What is the source for B;(I;)?

2: Inductive game theory: we look for the source in experiences.

Characteristics of those projects:

e Symbolic

e Learning - - accumulation of information, for example,
“information” is also symbolic

 the status of semantics?
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Part Il: Formal Part

Epistemic Logic KD? and its Extension EIR?

We consider only the 2-person case.
Logical Construction:

1. Primitive symbols: preferences expressions and logical
connectives

Inductive Definition of formulae
Logical axioms and inference rules
Definitions of a proof, and provability
Non-logical axioms: individual beliefs

o) 5 b

e Subtle relations between
the outside analyst’s viewpoint and a player’s viewpoint.
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KD?: Restrictions and Extensions

Epistemic Logics of Shallow depths GL; (0 < k < w)
- - K-Suzuki (‘03)

Infinitary extensions _ : .
- - K-Nagashim ('96,97) Fixed-point extensions

- - Hu-K-Suzuki ('15) - - Hu-K(14)
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The Epistemic Logic KD? \ 18

Logical axioms for classical logic such as
L1: AD (B 2 A);
12: AD(B>C)D>((A>DB)>(A>C0C));

L3: (1A - 13) - ((1A - B) - A)); Classical
L4: AN® D A, where 4 € ©; — logic
L5: A DV @, where A € @;

The three inference rules

ADB A ADB: Bed
Mp L )
B ADN\D

{ADB: Aed}
VODOB

(A-rule) (A-rule)

—_—

D:_IBi(_IA/\A);

Necessitation

A
Bi(4)




Language: primitive symbols + formulae

e Preference symbols: P;(aq,a,; by,by), a;,b; € S;,1 = 1,2;
e Decision/Prediction symbols: I;(a;), a; € S;,i = 1,2;

e Logical connectives: A(and), V (or), =(not), D (implies):
e Belief operators: B;(+), i = 1,2;

 Infinite regress operators: Ir;[-; -], 1 = 1,2.

Intended Interpretations:

e P;(aq,ay; by, by): PL1 weakly prefers (a4, a,) to (bq, by);
 B,(A) : PL1 believes 4;

e B;(I;(aq)): PL1 believes that a4 is a possible decision for him;
 B,B;(I;(aq)): PL2 predicts that a, is a possible decision for PL1.
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Infinite Regress Formulae 17

Infinite regress Iry [44, 45 ],

e To make B;(A1) meaningful, PL1 needs B{B,(4,);

* To have the latter, PL1 needs B;B,B;(4,); so on.
Individual Perspective for PL1:

B1B,Ir;[A4, A;]




The Fixed-point logic IR*> = KD? + the following two. 19

[RA;: Iri[A4,Az] D B;(A4;)AB;B;(A;) AB;B;(Ir;[A,, A, ]);

D; > Bi(4{)AB;B;(Aj) AB;B;(Dj)

IRI; (choice of the logically

DiDIri[Al,Az]
weakest )
[ - 'i
B,(A B.:B,B(A
1(1)\ /7:121(1) g
BiB;(42) | B1B;B1B,(4;) |
Ir1[A4, A;]

B,B,Ir;[A4, A;]




Proof - inference

A proof is a triple (X, <; ¥) so that

(X, <) is afinite tree;
1 assigns a formula to each node of X;

a formula attached to each leaf of (X, <) by ¥ is an instance
of the logical axioms;

for each non-leaf x € X,

{Y(y):y is an immediate predecessor of x}

Y(x)

forms an instance of inference rules.

A formula A is provable, denoted by - A, iff there is a proof

(X, <; ) with Y(xy) = A, where x; is the root of (X, <; ).

I' - A iff - A or there is some finite nonempty subset
® of I' such that - A®P DA.
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Decision (prediction) criterion:

Naq: PL1 should choose a best response again all of his
predictions about PL2’s decisions based on Na,:

Na,: PL2 should choose a best response again all of his
predictions about PL1’s decisions base on Na;.

These are described, taking beliefs into account, as follows:
O NO;: Ages; [i(si) 2 Asjes; (Bj(1;(s7))= Bst;(s;; 55))]

Additionally, we need to assume:
ON1;: A SiE€S; [1;(s;) 2 Vses; B; (1 (sj))]
ON2;: Ages, [1i(si) 2 BiB;(I;(s;)]

We denote NO;A N1; A N2; by NO12;. We assume
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O Irl-(gl-; gj): infinite regress of the game:
O Iry(WF;; WF;): the choice of the deductively weakest I;(s;).
® A;(g) = {Ir;,(g;; g;), Ir;(N012;; N012;)} Uy (WF;; WF)).

Lemma A;(g) is consistent in the logic EIR?.

Theorem 1. Let g be a solvable game. Then, A;(g) F B;(I;(s;)) =
B;(A;(s;)) for some game formula 4;(s;).

Theorem 2. Let g be a solvable game. Then, for any strategy s; € §;,
either Aj(g) F Bi(I;(sy)) or A;j(g) + Bij(=l;(sy))-

Theorem 3. Assume Axiom T. Let g be a solvable game. Then, the theory
(EIR?(T), A;(g)) is complete. i.e., forany 4, A;(g) A or A;(g) + —A.

Theorem 4: Let g be an unsolvable game. Then, for some strategy
s; € S;, neither Aj(g) + Bj(I;(s;)) nor Ai(g) + Bi(_lli(Si)).
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How should we interpret the decidability or undecidability
result?

From the viewpoint of purely ex ante decision making
even in an interdependent situation;
e individualistic and independent decision making is

® possible if the game is solvable;
® Impossible if it is unsolvable.

* |n a wider situation, one can bring his observation on the
other’s previous action = Inductive game theory
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