Game Theoretic Decidability and Undecidability

(Based on Hu-Kaneko (2014))

by Mamoru Kaneko, 2015/08/19

Part I: Informal Part

Ex ante decision making in a game

- A situation is interdependent
- decision making is Individualistic and Independent.

Q1: What are possible decisions?

Q2: Does he, in the first place, reach a decision?

Nash (1951) solution theory NE= #1 PD is solvable

	S ₂₁	S ₂₂
<i>s</i> ₁₁	5 ,5	1, 6
S ₁₂	6, 1	3, 3

#2 BS is unsolvable

	s ₂₁	S ₂₂
<i>S</i> ₁₁	2, 1	0, 0
S ₁₂	0, 0	1, 2

How do we evaluate the above Q1 and Q2?

Structure of game theoretical decision making

A: 1 Understanding of the situation – beliefs about the game

: 2 Decision/prediction criterion – how he and the other make decision.

B: Logical abilities of the players

C: possible decisions and predictions

Q2(Does he, in the first place, reach a decision?) is relevant under the consistency of beliefs in A.

Parallelism to the Axiomatic method in Mathematics.

We may recall Gödel's incompleteness theorem.

Recall Q2: Does he, in the first place, reach a decision?

Gödel's incompleteness theorem: Limitation on logical thinking

- Gödel's incompleteness theorem: Assuming the consistency of PA (Peano arithmetic), there is some (closed) formula A in PA such that
 - (*) neither PA $\vdash A$ nor PA $\vdash \neg A$,
 - formula A is neither provable nor its negation is provable in PA.
- PA = the natural number theory in classical predicate logic
- An example of A is the formula expressing "consistency" of PA.
- (*) can be viewed as a statement on the ideal mathematician.
- If a game player is an ideal mathematician to make a decision, does he possibly have a similar difficulty?
- Yes, he does, yet for a different but natural reason!

Individual Player's Inference

$B_i(\Gamma_i) \vdash B_i(A);$

- 1: Γ_i - player *i*'s beliefs a finite set of (symbolic) **sentences**
- 2: A -- his deduced consequence from Γ_i ;
- 3: \vdash - provability: existence of a proof in the logic EIR².
- 1: Γ_i player *i*'s beliefs
 - understanding of the game situation; preferences, etc.
 - Prediction/decision criterion;e.g., dominant strategy criterion, but here, Nash theory!
- 2: A his decision deduced from Γ_i ;
- 3: Γ_i may include false beliefs, relative to the objective situation.

We take a specific set $\Delta_i(g)$ of assumptions for as $B_i(\Gamma_i)$.

Choice of $\Delta_i(g)$: Nash (1951) theory

Decision (prediction) criterion:

 Na_1 : PL1 should choose a best response against all of his predictions about PL2's decisions based on Na_2 :

 Na_2 : PL2 should choose a best response against all of his predictions about PL1's decisions base on Na_1 .

Infinite Regress: PL1's inference for decision making:

$$B_1(Na_1) \rightarrow B_1B_2(Na_2) \rightarrow B_1B_2B_1(Na_1) \rightarrow \cdots$$

- Nash (1951) gave interchangeablity on the set of NE's E(G): $E(G) = E(G)_1 \times E(G)_2$ (Product form)
- If G satisfies this condition, the game is *solvable*; and otherwise, it is *unsolvable*.
- "Nash equilibrium" should be distinguished from Nash theory; it is a component of Nash theory.

$\Delta_i(g)$ is the set of basic beliefs

1. Infinite regress of Na_i and Na_j ;

$$B_i(Na_i)$$
, $B_iB_j(Na_j)$, $B_iB_jB_i(Na_i)$, · · ·

2. Infinite regress of g_i and g_j ;

$$B_i(g_i)$$
, $B_iB_j(g_j)$, $B_iB_jB_i(g_i)$, · · ·

3. The axiom choosing the logically weakest formulae

Two cases on $g = (g_1, g_2)$ are crucial: solvable and unsolvable.

• PD

	S ₂₁	S ₂₂
<i>S</i> ₁₁	5 ,5	1, 6
S ₁₂	6, 1	3, 3

BS

	S ₂₁	S ₂₂
<i>s</i> ₁₁	2, 1	0, 0
S ₁₂	0, 0	1, 2

Decidability Theorem

• Lemma: $\Delta_i(g)$ is consistent.

Decidability: Let g be a solvable game. Then, for any strategy $s_i \in S_i$, either $\Delta_i(g) \vdash B_i(I_i(s_i))$ or $\Delta_i(g) \vdash B_i(\neg I_i(s_i))$.

- $I_i(s_i)$ intends to mean " s_i is a possible decision for i.
- $\Delta_i(g) \vdash B_i(I_i(s_i))$ - "*i* deduces s_i to be a possible decision".
- $\Delta_i(g) \vdash B_i(\neg I_i(s_i))$ - "*i* deduces s_i not to be a possible decision".

	<i>S</i> ₂₁	S ₂₂
<i>s</i> ₁₁	5 ,5	1, 6
S ₁₂	6, 1	3, 3

Matching Pennies: No NE's

	S ₂₁	S ₂₂
s ₁₁	1,-1	-1, 1
S ₁₂	-1, 1	1, -1

Undecidability Theorem

Undecidablity: Let g be an unsolvable game. Then, for some strategy $s_i \in S_i$,

neither
$$\Delta_{i}(g) \vdash B_{i}(I_{i}(s_{i}))$$
 nor $\Delta_{i}(g) \vdash B_{i}(\neg I_{i}(s_{i}))$.

In the BS game, undecidability holds for either strategy.

	s ₂₁	S ₂₂
S ₁₁	2, 1	0, 0
S ₁₂	0, 0	1, 2

Undecidablity on predictions: Let g be an unsolvable game. Then, for some strategy $s_i \in S_i$,

neither
$$\Delta_i(g) \vdash B_i B_j(I_j(s_j))$$
 nor $\Delta_i(g) \vdash B_i B_j(\neg I_j(s_j))$.

Bridge between the Formalized and non-formalized theories

- E(G) is a the set of NE's.
- A subset F of E(G) is called a **subsolution** iff F is a maximal subset of E(G) satisfying interchangeability.

Let F^1 , ..., F^k be the list of subsolutions of game G.

Then, $\Delta_{\mathbf{i}}(g) \vdash B_{\mathbf{i}}(I_{i}(s_{i})) \iff s_{i} \in F^{t} \text{ for all } t = 1, ..., k.$

BS

	s ₂₁	S ₂₂
<i>S</i> ₁₁	2, 1	0, 0
S ₁₂	0, 0	1, 2

	s ₂₁	S ₂₂
<i>s</i> ₁₁	1, 1	0, 1
S ₁₂	1, 0	0,0

- BS has two subsolutions $\{(s_{11}, s_{21})\}$ and $\{(s_{12}, s_{22})\}$
- The 2nd game also has two: $\{(s_{11}, s_{21}), (s_{12}, s_{21})\}$ and $\{(s_{11}, s_{21}), (s_{11}, s_{22})\}$; they have an intersection $\{(s_{11}, s_{21})\}$.

Gödel's incompleteness theorem

$PA \not\vdash A$ nor $PA \not\vdash \neg A$

- PA: Peano Arithmetic;
- ⊢ : the provability relation of classical predicate logic;
- PA is assumed to be consistent;
- *A* is, e.g., "consistency" of PA.

Ours

if g is solvable, either $\Delta_{i}(g) \vdash B_{i}(I_{i}(s_{i}))$ or $\Delta_{i}(g) \vdash B_{i}(\neg I_{i}(s_{i}))$. if g is unsolvable, $\Delta_{i}(g) \not\vdash B_{i}(I_{i}(s_{i}))$ and $\Delta_{i}(g) \not\vdash B_{i}(\neg I_{i}(s_{i}))$.

- $\Delta_i(q)$: beliefs described previously;
- ⊢ : provability relation of (propositional) Epistemic Infinite-Regress Logic EIR²;
- $\Delta_{i}(g)$ is proved to be consistent;
- $I_i(s_i)$ is expressed as
 - "Nash strategy" if g is solvable;
 - no game formula if g is unsolvable.

Axiom T and Common knowledge of a Nash strategy

- Let G be a solvable game.
- If we add Axiom T (truthfulness): $B_i(A) \supset A$ to our logic, then we have
 - 2: $\Delta_i(g) \vdash I_i(s_i) \equiv \bigvee_{t_i} C[\operatorname{Nash}(s_i; t_i)].$
 - - it is a Nash strategy with common-knowledge.
 - 3: Our undecidability result is obtained in this case.
 - 4: if g is solvable, the theory ($EIR^2(T)$, $\Delta_i(g)$) is complete; if g is unsolvable, the theory is incomplete.
- ◆ However, we should not include Axiom T for various reasons.

Two projects: Inductive Game Theory and Epistemic Logic

$$B_i(\Gamma_i) \vdash B_i(A);$$

0: Γ_i -- player i's beliefs

1: What is the source for $B_i(\Gamma_i)$?

2: Inductive game theory: we look for the source in experiences.

Characteristics of those projects:

- Symbolic
- Learning - accumulation of information, for example, "information" is also symbolic
- the status of semantics?

Part II: Formal Part

Epistemic Logic KD² and its Extension EIR²

We consider only the 2-person case.

Logical Construction:

- 1. Primitive symbols: preferences expressions and logical connectives
- 2. Inductive Definition of formulae
- 3. Logical axioms and inference rules
- 4. Definitions of a proof, and provability
- 5. Non-logical axioms: individual beliefs
- Subtle relations between the outside analyst's viewpoint and a player's viewpoint.

KD²: Restrictions and Extensions

Epistemic Logics of Shallow depths GL_k ($0 \le k < \omega$)

- - K-Suzuki ('03)

Infinitary extensions

- - K-Nagashim ('96,'97)
- - Hu-K-Suzuki ('15)

Fixed-point extensions

- - Hu-K ('14)

Logical axioms for classical logic such as

L1:
$$A \supset (B \supset A)$$
;

L2:
$$(A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C));$$

L3:
$$(A \supset B) \supset ((A \supset B) \supset A)$$
;

L4: $\Lambda \Phi \supset A$, where $A \in \Phi$;

L5: $A \supset V \Phi$, where $A \in \Phi$;

The three inference rules

$$\frac{A \supset B \quad A}{B} \quad \mathsf{MP} \quad \frac{\{A \supset B \colon B \in \Phi\}}{A \supset \Lambda \Phi} \quad (\Lambda \text{-rule}) \quad \frac{\{A \supset B \colon A \in \Phi\}}{\vee \Phi \supset B} \quad (\Lambda \text{-rule})$$

K:
$$B_i(A \supset C) \supset (B_i(A) \supset B_i(C))$$
;

$$D: \neg \mathbf{B}_i(\neg A \land A);$$

$$\frac{A}{B_i(A)}$$
 Necessitation

Classical logic

Language: primitive symbols + formulae

- Preference symbols: $P_i(a_1, a_2; b_1, b_2), a_i, b_i \in S_i, i = 1,2;$
- Decision/Prediction symbols: $I_i(a_i)$, $a_i \in S_i$, i = 1,2;
- Logical connectives: Λ (and), V (or), \neg (not), \supset (implies);
- Belief operators: $\mathbf{B}_{i}(\cdot)$, i = 1,2;
- Infinite regress operators: $\mathbf{Ir}_i[\cdot;\cdot]$, i=1,2.

Intended Interpretations:

- $P_1(a_1, a_2; b_1, b_2)$: PL1 weakly prefers (a_1, a_2) to (b_1, b_2) ;
- $B_1(A)$: PL1 believes A;
- $B_1(I_1(a_1))$: PL1 believes that a_1 is a possible decision for him;
- $B_2B_1(I_1(a_1))$: PL2 predicts that a_1 is a possible decision for PL1.

Infinite regress $\mathbf{Ir}_1[A_1, A_2]$,

- To make $\mathbf{B}_1(A_1)$ meaningful, PL1 needs $\mathbf{B}_1\mathbf{B}_2(A_2)$;
- To have the latter, PL1 needs $B_1B_2B_1(A_1)$; so on. Individual Perspective for PL1:

The Fixed-point logic $IR^2 = KD^2 + the$ following two.

$$\begin{array}{|c|c|c|c|c|}\hline IRA_i: & Ir_i[A_1,A_2] \supset B_i(A_i) \wedge B_iB_j(A_j) \wedge B_iB_j(Ir_i[A_1,A_2]); \\ \hline \\ & D_i \supset B_i(A_i) \wedge B_iB_j(A_j) \wedge B_iB_j(D_j) \\ & D_i \supset Ir_i[A_1,A_2] & IRI_i \text{ (choice of the logically weakest)} \\ \hline \end{array}$$

$$B_1(A_1)$$
 $B_1B_2(A_2)$
 $B_1B_2B_1(A_1)$
 $B_1B_2B_1B_2(A_2)$
 $B_1B_2Ir_1[A_1,A_2]$

Proof - inference

A **proof** is a triple $(X, <; \psi)$ so that

- (X, <) is a finite tree;
- ψ assigns a formula to each node of X;
- a formula attached to each leaf of (X, <) by ψ is an instance of the logical axioms;
- for each non-leaf $x \in X$,

 $\{\psi(y): y \text{ is an immediate predecessor of } x\}$ $\psi(x)$

forms an instance of inference rules.

- A formula A is *provable*, denoted by $\vdash A$, iff there is a proof $(X, <; \psi)$ with $\psi(x_0) = A$, where x_0 is the root of $(X, <; \psi)$.
- $\Gamma \vdash A$ iff $\vdash A$ or there is some finite nonempty subset Φ of Γ such that $\vdash \land \Phi \supset A$.

Decision (prediction) criterion:

 Na_1 : PL1 should choose a best response again all of his predictions about PL2's decisions based on Na_2 :

 Na_2 : PL2 should choose a best response again all of his predictions about PL1's decisions base on Na_1 .

These are described, taking beliefs into account, as follows:

 $\square N0_i: \bigwedge_{s_i \in S_i} [I_i(s_i) \supset \bigwedge_{s_j \in S_j} (B_j(I_j(s_j)) \supset Bst_i(s_i; s_j))]$

Additionally, we need to assume:

- $\square N1_i: \ \land_{s_i \in S_i} [I_i(s_i) \supset \lor_{s_j \in S_j} B_j(I_j(s_j))]$
- \square $N2_i$: $\bigwedge_{s_i \in S_i} [I_i(s_i) \supset B_j B_i(I_i(s_i))]$

We denote $N0_i \wedge N1_i \wedge N2_i$ by $N012_i$. We assume

 \square I $r_i(N012_i; N012_i)$.

- \square Ir_i(g_i ; g_j): infinite regress of the game:
- \square Ir_i(WF_i; WF_i): the choice of the deductively weakest $I_i(s_i)$.

Lemma $\Delta_i(g)$ is consistent in the logic EIR^2 .

Theorem 1. Let g be a solvable game. Then, $\Delta_i(g) \vdash B_i(I_i(s_i)) \equiv B_i(A_i(s_i))$ for some game formula $A_i(s_i)$.

Theorem 2. Let g be a solvable game. Then, for any strategy $s_i \in S_i$, either $\Delta_i(g) \vdash B_i(I_i(s_i))$ or $\Delta_i(g) \vdash B_i(\neg I_i(s_i))$.

Theorem 3. Assume Axiom T. Let g be a solvable game. Then, the theory $(EIR^2(T), \Delta_i(g))$ is complete. i.e., for any A, $\Delta_i(g) \vdash A$ or $\Delta_i(g) \vdash \neg A$.

Theorem 4: Let g be an unsolvable game. Then, for some strategy $s_i \in S_i$, neither $\Delta_i(g) \vdash B_i(I_i(s_i))$ nor $\Delta_i(g) \vdash B_i(\neg I_i(s_i))$.

How should we interpret the decidability or undecidability result?

From the viewpoint of purely *ex ante* decision making even in an interdependent situation;

- individualistic and independent decision making is
 - possible if the game is solvable;
 - Impossible if it is unsolvable.
- In a wider situation, one can bring his observation on the other's previous action → Inductive game theory

References

- Hu, T., and M. Kaneko (2012), Critical Comparisons between the Nash Noncooperative Theory and Rationalizability, Logic and Interactive Rationality Yearbook 2012, Vol.II, eds. Z. Christo, et al. 203-226, http://www.illc.uva.nl/dg/?page_id=78
- Hu, T., and M. Kaneko (2014), Epistemic Infinite Regress Logic
- Hu, T., and M. Kaneko, & N.-Y. Suzuki (2014), Small Infinitary Epistemic Logics and Some Fixed-Point Logics, to be completed.
- Kaneko, M., (2002), Epistemic logics and their game theoretical applications: Introduction. *Economic Theory* 19, 7-62.
- Kaneko, M., (2004), Game Theory and Mutual Misunderstanding, Springer.
- Kaneko, M., J. J. Kline (2008), Inductive Game Theory: A Basic Scenario, *Journal of Mathematical Economics* 44, (2008), 1332--1363.
- Kaneko, M., and T. Nagashima, (1996,'97), Game logic and its applications Part I, Studia Logica 57, 325—354; and Part II 58 (1997), 273—303.
- Kaneko, M., and N.-Y. Suzuki, (2003), Epistemic models of shallow depths and decision making in games: Horticulture, (with N-Y. Suzuki), Journal of Symbolic Logic 68, 163-186.
- Nash, J. F., (1951), Non-cooperative Games, Annals of Mathematics 54, 286-295.
- Johansen, L., (1982), On the Status of the Nash Type of Noncooperative Equilibrium in Economic Theory, *Scand. J. of Economics* 84, 421-441.
- General Induction to the projects:『ゲーム理論と蒟蒻問答』日本評論社、(2003)