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Notations and introductory remarks

k = C: the base field

A1: the affine line

z : the standard coordinate on A1

P1: the projective line

X : a smooth projective curve of genus g(X )

OX : the structure sheaf of X

KX ,Ω
1
X : the canonical sheaf / the sheaf of holomorphic

1-forms of X
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Fuchsian equations and their exponents

Let X = P1, P = {p1, . . . , pn ∈ A1, p0 =∞} be distinct marked
points (n ≥ 2).
Fix m ≥ 2, and in all pj a non-resonant system of constants

µj
1, . . . , µ

j
m:

µj
k − µ

j
l /∈ Z (for k 6= l).

Assume they satisfy Fuchs’ relation

n∑
j=0

m∑
k=1

µj
k =

(n − 1)m(m − 1)

2
.
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Fuchsian equations, cont’d

We consider ordinary differential equations for w = w(z)

dmw

dzm
− R1(z)

dm−1w

dzm−1
− · · · − Rm(z)w = 0,

where Rk(z) = Pk (z)
Qk (z) are rational functions.

Such an equation is called a Fuchsian differential equation with
exponents {µj

k} if the coefficients Rk satisfy:

1 Qk has a zero of order at most k at any pj and no other zeros
(i.e. Qk =

∏n
j=1(z − pj)

k);

2 deg(Pk) ≤ k(n − 1);

3 µj
1, . . . , µ

j
m are the roots of the indicial polynomial

ρ(ρ−1) · · · (ρ−m+1)−resz=pj R1(z)ρ(ρ−1) · · · (ρ−m+2)+· · ·
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A question of N. Katz

Let

1 E be the affine space of Fuchsian differential equations with
singularities at the points P, with exponents {µj

k};
2 M be the moduli space of stable logarithmic connections

(E ,∇) on P1 with singularities in P, with resz=pj ∇ conjugate

to diag(µj
1, . . . , µ

j
m).

A computation shows that

dim(M) = 2− 2m2 + m(m − 1)(n + 1) = 2 dim(E).

Question (N. Katz, 1996)

Does there exist a weight 1 Hodge structure on TM whose
(1, 0)-part is TE?
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Hitchin’s Teichmüller component

Let g(X ) ≥ 2, and M be the moduli space of stable PSlm(C)
Higgs bundles on X , with its Dolbeault symplectic structure ωDol.
Consider the Hitchin map

p : M →
n⊕

k=2

H0(X ,K k
X )

which defines a completely integrable system. In particular, the
fibers are Lagrangian tori, and the base is of dimension dim(M)/2.
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Hitchin’s Teichmüller component, cont’d

Then, p admits a section s as follows: given αk ∈ H0(X ,K k
X ), set

V = K
−(m−1)/2
X ⊕ · · · ⊕ K

(m−1)/2
X

θ : V → V ⊗ KX

=


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . .

0 0 · · · 0 1
αm αm−1 · · · α2 0


In particular, the dimension of the family of Higgs bundles on the
fixed vector bundle V is dim(M)/2.
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The basic set-up

Let X = P1, p0 =∞, p1, . . . , pn ∈ A1, and for all j ∈ {0, . . . , n}
fix a regular adjoint orbit Cj ⊂ Glm(C). Denote by {µj

1, . . . , µ
j
m}

the eigenvalues of Cj repeated according to their multiplicity, and
assume that non-resonance and Fuchs’ relation hold.
Let

M = MdR(P; C0, . . . ,Cn)

stand for the moduli space of stable meromorphic connections
(E ,∇) on P1 with logarithmic singularities in P, such that
respj ∇ ∈ Cj . Denote by ωdR the natural de Rham symplectic
structure on M.
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The frame

Set

ψ(z) =
n∏

j=1

(z − pj),

and consider a Fuchsian equation with exponents {µj
k}

L(w) =
dmw

dzm
− P1(z)

ψ(z)

dm−1w

dzm−1
− · · · − Pm(z)

ψm(z)
w = 0.

Introduce a new frame on the affine part A1

w1 = w

w2 = ψw ′

...

wm = ψm−1w (m−1)
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The extension

L is then equivalent to the connection

∇L = d−


0 1 0 · · · 0
0 ψ′ 1 · · · 0
...

. . .
. . .

0 0 · · · (m − 2)ψ′ 1
Pm Pm−1 · · · P2 P1 + (m − 1)ψ′


dz

ψ

in the frame (w1, . . . ,wm). A similar construction at ∞ extends
∇L as a logarithmic connection on the vector bundle

V = O⊕ KP1(P)⊕ · · · ⊕ Km−1
P1 ((m − 1)P).
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The embedding

This yields and embedding

E→M

L 7→ (V ,∇L).

We will use this to think of E as an algebraic subvariety of M.
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Endomorphism sheaves

Denote by End(E ) the sheaf of holomorphic endomorphisms of E ,
and by End iso(E ) the sheaf of locally isomonodromic
endomorphisms:

End iso(E )(U) = {ϕ ∈ End(E )(U) : ϕ(pj) ∈ im(adrespj
∇)}

for an open set U containing pj as only marked point.
Clearly, one has an exact sequence

0→ End iso(E )→ End(E )→ coker(adresP ∇)→ 0,

where coker(adresP ∇) stands for the sky-craper sheaf with stalk at
pj equal to the vector-space coker(adrespj

∇).

We say that End iso(E ) is the negative Hecke-modification of
End(E ) along coker(adresP ∇).
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The deformation complex

The infinitesimal automorphisms, deformations and the obstruction
to the smoothness of M in its point (E ,∇) are then given by the
hypercohomology groups Hd of degrees d = 0, d = 1 and d = 2
respectively of the complex

End(E )
∇−→ End iso(E )⊗Ω1

P1(P), (D)

with non-zero terms lying in degrees 0 and 1 (Biquard 1997).
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Some exact sequences

The hypercohomology long exact sequence of D reads

0→ H0(D)→ H0(End(E ))
H0(∇)−−−−→ H0(End iso(E )⊗Ω1

P1(P))→

→ H1(D)→ H1(End(E ))
H1(∇)−−−−→ H1(End iso(E )⊗Ω1

P1(P))→
→ H2(D)→ 0.

Introducing

C = coker(H0(∇))

K = ker(H1(∇)),

we obtain
0→ C → H1(D)→ K → 0.
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Duality

Claim

The vector spaces C and K are naturally dual to each other.

Proof.

The dual D∨ of D fits into the exact sequence of complexes

0→ D∨[−1]→ D→ [coim(adresP ∇)
adresP ∇−−−−−→ im(adresP ∇)]→ 0,

where the two non-zero terms in the last complex lie in degrees 0
and 1 (i.e. D∨[−1] is a negative Hecke-modification of D).
Notice that adresP ∇ is an isomorphism from its coimage onto its
image; apply Serre-duality.
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A remark on parabolic structures

Suppose (E ,∇) is furthermore endowed with a non-trivial
(quasi-)parabolic structure. Denote by

Endpar the sheaf of endomorphisms compatible with the
parabolic structure at the marked points (parabolic
endomorphisms);

Endpar iso the sheaf of locally isomonodromic parabolic
endomorphisms.

Then the complex governing the deformations of the parabolic
integrable connection is

Endpar(E )
∇−→ Endpar iso(E )⊗Ω1

P1(P) (Dpar)
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Parabolic structures, cont’d

Denote by pj ⊂ gl(E |pj ) the parabolic subalgebra, and by p the
sky-craper sheaf whose stalk at pj is pj . We have exact sequences

0→ End(−P)→ Endpar → p→ 0

and
0→ End iso(−P)→ Endpar iso → p→ 0.

Since respj (∇) preserves pj , it follows as before that the analogous
short exact sequence

0→ Cpar → H1(Dpar)→ Kpar → 0

is naturally isomorphic to the non-parabolic one. In particular, the
spaces Cpar and Kpar are naturally dual to each other.
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For any L ∈ E ⊂M, consider the short exact sequence

0→ C → TLM→ K → 0.

Theorem

We have TLE = C . In particular, E is Lagrangian for ωdR.

Proof.

Inclusion TLE ⊆ C : the map TLM→ K is restriction of an
infinitesimal modification of (E ,∇) to the infinitesimal
modification of the underlying holomorphic vector bundle E . Since
for deformations in E we always have E = V , this map restricted
to TLE is 0.
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Apparent singularities

Let L be an equation with rational coefficients. A singular point p
is called an apparent singularity if there is a basis of regular
solutions of L in a small neighborhood of p.

Example

For any k ∈ N+, the equation

w ′ − k

z
w = 0

has an apparent singularity at 0: the solution w(z) = zk is regular.

Fact

At any apparent singularity p of L, we have P1(p) ∈ N+.
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Cyclic vectors

Let (E ,∇) ∈M be arbitrary and U ⊂ A1 be open. A cyclic vector
for (E ,∇) on U is a section v ∈ H0(U,E ) such that

v ,∇∂z v , . . . ,∇m−1
∂z

v

generate E on U (over O(U)).
If a cyclic vector v for (E ,∇) on U exists, then ∇ on U can be
written as ∇Lv for some equation Lv with analytic coefficients.

Theorem (N. Katz, 1987)

For any (E ,∇) ∈M, there exists a finite set S ⊂ A1 such that on
A1 \ S the connection ∇ admits a cyclic vector.
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Properties of the singular locus

In general, we have
S = P ∪ A,

where A is the set of apparent singularities of Lv .

For a 1-parameter analytic family ∇(t), it is possible to choose
v(t) analytically with t; in particular, the apparent singular locus
A(t) then varies analytically with t.
If moreover (E (0),∇(0)) ∈ E, then for v = w we have A(0) ⊂ P.
Therefore, the points a(t) ∈ A(t) “split off” analyitically from the
set P.
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Proof of the inverse inclusion

Inclusion C ⊆ TLE: assume (E (t),∇(t)) is tangent to some

V ∈ ker(T(E(0),∇(0))M→ K ).

Let a(t) ∈ A(t) be the position of an apparent singularity of Lv(t).
Let v(t, z) denote a cyclic vector for ∇(t), analytic in t, and such
that v(0, z) = w(z). Introduce ψ(t, z) = (z − a(t))ψ(z) and write
Lt locally as

dmv(t, z)

dzm
− P1(t, z)

ψ(t, z)

dm−1v(t, z)

dzm−1
− · · · − Pm(t, z)

ψm(t, z)
v(t, z) = 0,

with Pk(t, z) analytic in t, z .
Notice that P1(t, a(t)) ∈ N+ is analytic in t ⇒ constant.
Furthermore, P1(0, z) = (z − p)P1(z). But then P1(0, p) = 0, a
contradiction. So a(t) = p, and for all t the connection ∇(t)
comes from a Fuchsian equation.
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The number of apparent singularities

Let N denote the smallest number such that every (E ,∇) ∈M can
be written as a Fuchsian equation with at most N apparent
singularities.

Theorem (M. Ohtsuki, 1982)

We have N ≤ dim(E).

Furthermore, equality was conjectured.

Theorem

We have N ≥ dim(E).
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Estimation of N

For any A = {a1, . . . , aN} denote by Ma1,...,aN
the subvariety

defined by connections that can be represented by a Fuchsian
equation with apparent singularities in A.
It is sufficient to show that

dim(Ma1,...,aN
) = dim(E).
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The formal dimension count

van der Put and Singer: there is a total of

m +
m(m + 1)(n + N − 1)

2

parameters. Conditions on them:

at real singularities: local exponents yield m(n + 1)
constraints, redundant by the residue theorem, so there
remain m(n + 1)− 1 constraints;

at apparent singularities: local exponents yield Nm
constraints, plus N m(m−1)

2 additional constraints, so a total of

N m(m+1)
2 constraints.

Need to check: these conditions are independent.
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Szilárd Szabó Deformations of connections



Motivation
Infinitesimal deformations of logarithmic connections

Apparent singularities of differential equations
An example: the Painlevé VI system

A generalised van der Monde determinant

Lemma

For any r ≥ 0 and b1, . . . , br+2 ∈ C, the determinant of

1 b1 b2
1 · · · b2r+1

1
...

...
...

...

1 br+2 b2
r+2 · · · b2r+1

r+2

0 1 2b1 · · · (2r + 1)b2r
1

...
...

...
...

0 1 2br · · · (2r + 1)b2r
r


is (up to a sign) equal to

(br+1 − br+2)
∏

1≤i≤r ,r+1≤j≤r+2

(bi − bj)
2
∏

1≤i<j≤r

(bi − bj)
4.
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A generalisation of the main Theorem

For any (E ,∇) ∈Ma1,...,aN
write

0→ C → T(E ,∇)M→ K → 0.

Corollary

We have
T(E ,∇)Ma1,...,aN

= C .

In particular, Ma1,...,aN
is Lagrangian with respect to ωdR.

Dimensions agree ⇒ sufficient to check ⊆.
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Proof of the inculsion

Two cases to check:

1 An apparent singularity a of weight > 1 splitting into two (or
more) apparent singularities: similar to the previous argument;

2 An apparent singularity a(t) depending non-trivially with t:
the cyclic trivialisations at t = 0 and at arbitrary t are related
by the gauge transformation

diag

(
1,

z − a(t)

z − a(0)
, . . . ,

(z − a(t))m−1

(z − a(0))m−1

)
,

whose derivative with respect to t is

diag

(
1,
−a′(t)

z − a(0)
, . . .

)
which is not holomorphic at z = a(0) unless a′(t) = 0.
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The connection on an affine chart

Studied by Jimbo-Miwa, Arinkin-Lysenko, Inaba-Iwasaki-Saito, . . .
Let m = 2, n = 3. Fix p1, p2, p3 ∈ A1 and non-zero semisimple
orbits Cj for all j , such that

∑
tr Cj = 0. Then dim(E) = 1, so

there is a unique apparent singularity.
Let (E ,∇) ∈MdR(P; C0,C1,C2,C3). On A1, in a logarithmic
trivialisation (e1, e2) one can write ∇ as

∇ = d−
3∑

j=1

Aj

z − pj
dz

for some matrices Aj ∈ Cj

Aj =

(
αj βj

γj δj

)
.
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The locus of the apparent singularity

Apply a constant gauge transformation to make γ1 + γ2 + γ3 = 0.
(This is always possible — choice of an eigenvector of resp0(∇)!)
Then we can apply a Hecke-modification at infinity and extend ∇
to a connection on E = OP1(p0)⊕ OP1 .
The only global section of E∨ (up to a constant) is e∨2 . We have

∇∨(e∨2 ) =
∑

j

(
γj

δj

)
dz

z − pj
,

hence the Wronski-determinant is

−
∑

j

γjdz

z − pj
.

Therefore the equation (in z) of the apparent singularity is

z(γ1(p2+p3)+γ2(p3+p1)+γ3(p1+p2)) = γ1p2p3+γ2p3p1+γ3p1p2.
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Splitting off infinity

In case the solution z converges to ∞, in the limit it is possible to
apply another Hecke-modification and extend ∇ on the bundle
OP1(p0)⊕ OP1(−p0). By a result of A. Bolibruch, ∇ is then
associated to a Fuchsian equation.

Furthermore, if we had started with the other eigenvector of
resp0(∇), then we would have arrived at the bundle
OP1(−p0)⊕ OP1(p0), which again comes from a Fuchsian
equation. So, at ∞ we get two copies of E ∼= A1 included in M.
A similar construction holds for the other singular points ⇒ we get
8 copies of A1 in M, 2 over each singular point pj .
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The fibration

The moduli space P of stable quasi-parabolic bundles on P1 with
parabolic points in p0, p1, p2, p3 is known to be the non-separated
scheme P1 with p0, p1, p2, p3 doubled.
There is a natural map

M→ P,

whose fibers are isomorphic to A1.
The tangent to this map is

TM→ K .
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Open questions

Existence of a real structure on M whose fix point set
contains E as a component?

Link between the minimal number of apparent singularities
and the stratification corresponding to the type of the
underlying vector bundle?

Other structure groups?

etc.
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Szilárd Szabó Deformations of connections



Motivation
Infinitesimal deformations of logarithmic connections

Apparent singularities of differential equations
An example: the Painlevé VI system
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