Definable Morse functions in a real closed field

Tomohiro kawakami

Wakayama University

2011.8.30

Ordered fields

• A field $(R, +, \cdot, <)$ with a dense linear order < without endpoints is an ordered field if it satisfies the following two conditions.

Ordered fields

- A field $(R, +, \cdot, <)$ with a dense linear order < without endpoints is an ordered field if it satisfies the following two conditions.
 - (1) For any $x, y, z \in R$, if x < y, then x + z < y + z.
 - (2) For any $x, y, z \in R$, if x < y and z > 0, then xz < yz.

• An ordered field $(R, +, \cdot, <)$ is a *real field* if it satisfies the following condition.

• An ordered field $(R, +, \cdot, <)$ is a *real field* if it satisfies the following condition.

For any
$$y_1,\ldots,y_m\in R$$
, $y_1^2+\cdots+y_m^2=0\Rightarrow y_1=\cdots=y_m=0$.

• An ordered field $(R, +, \cdot, <)$ is a *real field* if it satisfies the following condition.

For any $y_1, \ldots, y_m \in R$, $y_1^2 + \cdots + y_m^2 = 0 \Rightarrow y_1 = \cdots = y_m = 0$. A real field $(R, +, \cdot, <)$ is a *real closed field* if it satisfies one of the following two equivalent conditions.

• An ordered field $(R, +, \cdot, <)$ is a *real field* if it satisfies the following condition.

For any $y_1, \ldots, y_m \in R$, $y_1^2 + \cdots + y_m^2 = 0 \Rightarrow y_1 = \cdots = y_m = 0.$

A real field $(R, +, \cdot, <)$ is a real closed field if it satisfies one of the following two equivalent conditions.

- (1) [Intermediate value property] For every $f(x) \in R[x]$, if a < band $f(a) \neq f(b)$, then $f([a,b]_R)$ contains $[f(a),f(b)]_R$ if f(a) < f(b) or $[f(b), f(a)]_R$ if f(b) < f(a), where $[a,b]_R = \{x \in R | a \le x \le b\}.$
- (2) The ring $R[i] = R[x]/(x^2+1)$ is an algebraically closed field.

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

- O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:
 - (1) The field \mathbb{R} of real numbers.

- O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:
 - (1) The field \mathbb{R} of real numbers.
 - (2) $\mathbf{R}_{an}:=(\mathbb{R},+,\cdot,<,(f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n\to\mathbb{R}, n\in\mathbb{N}$ that vanish identically outside $[-1,1]^n$ and whose restrictions to $[-1,1]^n$ are analytic.

- O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:
 - (1) The field \mathbb{R} of real numbers.
 - (2) $\mathbf{R}_{an}:=(\mathbb{R},+,\cdot,<,(f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n\to\mathbb{R}, n\in\mathbb{N}$ that vanish identically outside $[-1,1]^n$ and whose restrictions to $[-1,1]^n$ are analytic.
 - (3) $\mathbf{R}_{an}^S := (\mathbb{R}, +, \cdot, <, (f), (x^r)_{r \in S})$, where S is a subset of \mathbb{R} , f ranges over all restricted analytic functions as in (2), and the function $x^r : \mathbb{R} \to \mathbb{R}$ is given by

$$a\mapsto\left\{egin{array}{ll} a^r, & a>0 \ 0, & a<0 \end{array}
ight..$$

- O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:
 - (1) The field \mathbb{R} of real numbers.
 - (2) $\mathbf{R}_{an}:=(\mathbb{R},+,\cdot,<,(f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n\to\mathbb{R}, n\in\mathbb{N}$ that vanish identically outside $[-1,1]^n$ and whose restrictions to $[-1,1]^n$ are analytic.
 - (3) $\mathbf{R}_{an}^S := (\mathbb{R}, +, \cdot, <, (f), (x^r)_{r \in S})$, where S is a subset of \mathbb{R} , f ranges over all restricted analytic functions as in (2), and the function $x^r : \mathbb{R} \to \mathbb{R}$ is given by

$$a\mapsto \left\{egin{array}{ll} a^r, & a>0 \ 0, & a\leq 0 \end{array}
ight..$$

(4) $\mathbf{R}_{exp}:=(\mathbb{R},+,\cdot,<,exp)$, where $exp:\mathbb{R}\to\mathbb{R}$ denotes the exponential function $x\mapsto e^x$.

- O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:
 - (1) The field \mathbb{R} of real numbers.
 - (2) $\mathbf{R}_{an}:=(\mathbb{R},+,\cdot,<,(f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n\to\mathbb{R},n\in\mathbb{N}$ that vanish identically outside $[-1,1]^n$ and whose restrictions to $[-1,1]^n$ are analytic.
 - (3) $\mathbf{R}_{an}^S := (\mathbb{R}, +, \cdot, <, (f), (x^r)_{r \in S})$, where S is a subset of \mathbb{R} , f ranges over all restricted analytic functions as in (2), and the function $x^r : \mathbb{R} \to \mathbb{R}$ is given by

$$a\mapsto \left\{ egin{array}{ll} a^r, & a>0 \ 0, & a\leq 0 \end{array}
ight.$$

- (4) $\mathbf{R}_{exp}:=(\mathbb{R},+,\cdot,<,exp)$, where $exp:\mathbb{R}\to\mathbb{R}$ denotes the exponential function $x\mapsto e^x$.
- (5) $\mathrm{R}_{an,exp}:=(\mathbb{R},+,\cdot,<,(f),exp)$, where (f) and exp denote as above.

• An ordered structure (R,<) with a dense linear order < without endpoints is *o-minimal (order minimal)* if every definable set of R is a finite union of open intervals and points, where open interval means $(a,b), -\infty < a < b < \infty$.

• An ordered structure (R,<) with a dense linear order < without endpoints is o-minimal (order minimal) if every definable set of R is a finite union of open intervals and points, where open interval means $(a,b),-\infty \leq a < b \leq \infty$. If $(R,+,\cdot,<)$ is a real closed field, then it is o-minimal and the

If $(R, +, \cdot, <)$ is a real closed field, then it is o-minimal and the collection of definable sets coincides that of semialgebraic sets.

• An ordered structure (R,<) with a dense linear order < without endpoints is o-minimal (order minimal) if every definable set of R is a finite union of open intervals and points, where open interval means $(a,b),-\infty \leq a < b \leq \infty$. If $(R,+,\cdot,<)$ is a real closed field, then it is o-minimal and the collection of definable sets coincides that of semialgebraic sets. The topology of R is the interval topology and the topology of R^n is the product topology.

• An ordered structure (R,<) with a dense linear order < without endpoints is *o-minimal* (order minimal) if every definable set of R is a finite union of open intervals and points, where open interval means $(a,b), -\infty \le a < b \le \infty$.

If $(R, +, \cdot, <)$ is a real closed field, then it is o-minimal and the collection of definable sets coincides that of semialgebraic sets.

The topology of R is the interval topology and the topology of R^n is the product topology.

In this presentation, everything is considered in an o-minimal expansion $\mathcal{N}=(R,+,\cdot,<,\ldots,)$ of a real closed field $(R,+,\cdot,<)$ unless otherwise stated.

Definable C^r diffeomorphisms

• Let $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ be definable open sets and $2 \leq r < \infty$. A C^r map $f: U \to V$ is a definable C^r map if the graph of f is definable.

Definable C^r diffeomorphisms

- Let $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ be definable open sets and $2 \leq r < \infty$. A C^r map $f: U \to V$ is a *definable* C^r *map* if the graph of f is definable.
 - A C^r diffeomorphism between definable open sets is a *definable* C^r diffeomorphism if its graph is definable.

Definable C^r manifolds and affine definable C^r manifolds

Definition

A Hausdorff space X is an n-dimensional definable C^r manifold if there exist a **finite** open cover $\{U_{\lambda}\}_{{\lambda}\in{\Lambda}}$ of X, finite open sets $\{V_{\lambda}\}_{{\lambda}\in\Lambda}$ of \mathbb{R}^n , and finite homeomorphisms $\{\phi_{\lambda}: U_{\lambda} \to V_{\lambda}\}_{{\lambda} \in \Lambda}$ such that for any λ, ν with $U_{\lambda} \cap U_{\nu} \neq \emptyset$, $\phi_{\lambda}(U_{\lambda} \cap U_{\nu})$ is definable and $\phi_{\nu} \circ \phi_{\lambda}^{-1} : \phi_{\lambda}(U_{\lambda} \cap U_{\nu}) \to \phi_{\nu}(U_{\lambda} \cap U_{\nu})$ is a definable C^r diffeomorphism.

• This pair $(U_{\lambda}, \phi_{\lambda})$ of sets and homeomorphisms is called a *definable* C^r coordinate system.

Definable C^r manifolds and affine definable C^r manifolds

Definition

A Hausdorff space X is an n-dimensional definable C^r manifold if there exist a **finite** open cover $\{U_{\lambda}\}_{{\lambda}\in{\Lambda}}$ of X, finite open sets $\{V_{\lambda}\}_{{\lambda}\in\Lambda}$ of \mathbb{R}^n , and finite homeomorphisms $\{\phi_{\lambda}: U_{\lambda} \to V_{\lambda}\}_{{\lambda} \in \Lambda}$ such that for any λ, ν with $U_{\lambda} \cap U_{\nu} \neq \emptyset$, $\phi_{\lambda}(U_{\lambda} \cap U_{\nu})$ is definable and $\phi_{\nu} \circ \phi_{\lambda}^{-1} : \phi_{\lambda}(U_{\lambda} \cap U_{\nu}) \to \phi_{\nu}(U_{\lambda} \cap U_{\nu})$ is a definable C^r diffeomorphism.

- This pair $(U_{\lambda}, \phi_{\lambda})$ of sets and homeomorphisms is called a *definable* C^r coordinate system.
- A definable C^r manifold is affine if it is definably C^r diffeomorphic to a definable C^r submanifold of some R^n .

Nash manifolds and affine Nash manifolds

• A C^{∞} manifold definable in $\mathcal{R}=(\mathbb{R},+,\cdot,<)$ is called a *Nash manifold*.

Nash manifolds and affine Nash manifolds

• A C^{∞} manifold definable in $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ is called a *Nash manifold*.

A Nash manifold is *affine* if it is Nash diffeomorphic to a Nash submanifold of some \mathbb{R}^n .

Nash manifolds and affine Nash manifolds

ullet A C^{∞} manifold definable in $\mathcal{R}=(\mathbb{R},+,\cdot,<)$ is called a *Nash manifold*.

A Nash manifold is *affine* if it is Nash diffeomorphic to a Nash submanifold of some \mathbb{R}^n .

Theorem (Shiota (1986))

Any compact C^{∞} manifold of positive dimension admits uncountably many nonaffine Nash manifold structures.

Examples of definable C^r manifolds

Example

(1) The n-dimensional unit sphere $S^n = \{(x_1, \ldots, x_{n+1}) \in R^{n+1} |$ $\sum_{i=1}^{n+1} x_i^2 = 1$ is an n-dimensional definable C^{∞} manifold. (2) $T^2 = S^1 \times S^1$ is a 2-dimensional definable C^{∞} manifold.

Tomohiro kawakami (Wakayama University) Definable Morse functions in a real closed fiel

Examples of definable C^r manifolds

Example

- (1) The n-dimensional unit sphere $S^n = \{(x_1, \ldots, x_{n+1}) \in R^{n+1} | \sum_{i=1}^{n+1} x_i^2 = 1\}$ is an n-dimensional definable C^{∞} manifold. (2) $T^2 = S^1 \times S^1$ is a 2-dimensional definable C^{∞} manifold.
 - The above examples are affine Nash manifolds.

Theorem ((2005))

For every o-minimal expansion \mathcal{M} of $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$, every definable C^r manifold is affine when $0 < r < \infty$.

Theorem ((2005))

For every o-minimal expansion \mathcal{M} of $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$, every definable C^r manifold is affine when $0 \le r < \infty$.

Theorem (Berarducci and M. Otero (2001))

For every o-minimal expansion \mathcal{N} of a real closed field $(R,+,\cdot,<)$, every definably compact definable C^r manifold X is definably C^r diffeomorphic to a definable C^r submanifold of some R^n when $0 < r < \infty$.

Theorem ((2005))

For every o-minimal expansion \mathcal{M} of $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$, every definable C^r manifold is affine when $0 \le r < \infty$.

Theorem (Berarducci and M. Otero (2001))

For every o-minimal expansion \mathcal{N} of a real closed field $(R,+,\cdot,<)$, every definably compact definable C^r manifold X is definably C^r diffeomorphic to a definable C^r submanifold of some R^n when $0 \le r < \infty$.

Theorem (Fischer (2008))

For every exponential o-minimal expansion \mathcal{M} of $\mathcal{R}=(\mathbb{R},+,\cdot,<)$, every definable C^{∞} manifold is affine.

Theorem ((2005))

For every o-minimal expansion \mathcal{M} of $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$, every definable C^r manifold is affine when $0 \le r < \infty$.

Theorem (Berarducci and M. Otero (2001))

For every o-minimal expansion \mathcal{N} of a real closed field $(R,+,\cdot,<)$, every definably compact definable C^r manifold X is definably C^r diffeomorphic to a definable C^r submanifold of some R^n when $0 \le r < \infty$.

Theorem (Fischer (2008))

For every exponential o-minimal expansion \mathcal{M} of $\mathcal{R}=(\mathbb{R},+,\cdot,<)$, every definable C^{∞} manifold is affine.

ullet The assumption that ${\mathcal M}$ is exponential is necessary for Fischer's theorem.

Critical points and critical values

ullet Let X be an n-dimensional definable C^r manifold and $f:X o\mathbb{R}$ a definable C^r function.

Critical points and critical values

- ullet Let X be an n-dimensional definable C^r manifold and $f:X o\mathbb{R}$ a definable C^r function.
 - We say that a point $p \in X$ is a *critical point* of f if the differential of f at p is zero.

Critical points and critical values

- ullet Let X be an n-dimensional definable C^r manifold and $f:X o\mathbb{R}$ a definable C^r function.
 - We say that a point $p \in X$ is a *critical point* of f if the differential of f at p is zero.
 - If p is a critical point of f, then f(p) is called a *critical value* of f.

Nondegenerate critical points

• Let p be a critical point of f and (U, u) a definable C^r coordinate system on X at p (i.e. U is a definable open subset of X containing p and u is a definable C^r diffeomorphism from U onto a definable open subset of \mathbb{R}^n with u(p) = 0).

Nondegenerate critical points

- Let p be a critical point of f and (U, u) a definable C^r coordinate system on X at p (i.e. U is a definable open subset of X containing p and u is a definable C^r diffeomorphism from U onto a definable open subset of \mathbb{R}^n with u(p) = 0).
 - The critical point p is *nondegenerate* if the Hessian matrix of $f \circ u^{-1}$ at 0 is nonsingular.

Nondegenerate critical points

- Let p be a critical point of f and (U, u) a definable C^r coordinate system on X at p (i.e. U is a definable open subset of X containing p and u is a definable C^r diffeomorphism from U onto a definable open subset of \mathbb{R}^n with u(p) = 0).
 - The critical point p is *nondegenerate* if the Hessian matrix of $f \circ u^{-1}$ at 0 is nonsingular.
 - Direct computations show that the notion of nondegeniricity does not depend on the choice of a local coordinate system.

Nondegenerate critical points

- Let p be a critical point of f and (U, u) a definable C^r coordinate system on X at p (i.e. U is a definable open subset of X containing p and u is a definable C^r diffeomorphism from U onto a definable open subset of \mathbb{R}^n with u(p) = 0).
 - The critical point p is *nondegenerate* if the Hessian matrix of $f \circ u^{-1}$ at 0 is nonsingular.
 - Direct computations show that the notion of nondegeniricity does not depend on the choice of a local coordinate system.
 - Y. Peterzil and S. Starchenko (2007) introduced definable C^r Morse functions in an o-minimal expansion of the standard structure of a real closed field when r > 2.

Definable C^r topology

• Let $Def^r(R^n)$ denote the set of definable C^r functions on R^n . For each $f \in Def^r(R^n)$ and for each positive definable function $\epsilon: R^n \to R$, the ϵ -neighborhood $N(f;\epsilon)$ of f in $Def^r(R^n)$ is defined by $\{h \in Def^r(R^n) || \partial^\alpha (h-f)| < \epsilon, \forall \alpha \in (\mathbb{N} \cup \{0\})^n, |\alpha| \le r\}$, where $\alpha = (\alpha_1, \ldots, \alpha_n) \in (\mathbb{N} \cup \{0\})^n$, $|\alpha| = \alpha_1 + \cdots + \alpha_n, \partial^\alpha F = \frac{\partial^{|\alpha|} F}{\partial x_1^{\alpha_1} \ldots \partial x_n^{\alpha_n}}$. We call the topology defined by these ϵ -neighborhoods the definable C^r topology.

Definable C^r topology

• Let $Def^r(R^n)$ denote the set of definable C^r functions on R^n . For each $f \in Def^r(R^n)$ and for each positive definable function $\epsilon: R^n \to R$, the ϵ -neighborhood $N(f; \epsilon)$ of f in $Def^r(R^n)$ is defined by

$$\begin{split} \{h \in Def^r(R^n) || \partial^\alpha (h-f)| < \epsilon, \forall \alpha \in (\mathbb{N} \cup \{0\})^n, |\alpha| \le r\}, \\ \text{where } \alpha = (\alpha_1, \dots, \alpha_n) \in (\mathbb{N} \cup \{0\})^n, \\ |\alpha| = \alpha_1 + \dots + \alpha_n, \partial^\alpha F = \frac{\partial^{|\alpha|} F}{\partial x_n^{\alpha_1} \dots \partial x_n^{\alpha_n}}. \end{split}$$

We call the topology defined by these ϵ -neighborhoods the *definable* C^r topology.

Let X be a definable C^r submanifold of R^n . As in the same way, We can define the *definable* C^r topology of the set $Def^r(X)$ of definable C^r functions on X.

Our result

Theorem

Let X be a definably compact definable C^r manifold and $2 \le r < \infty$. Then the set of definable Morse functions $Def^r_{Morse}(X)$ is open and dense in the set $Def^r(X)$ of definable C^r functions on X with respect to the definable C^2 topology.

• To prove Theorem, we need the following results.

Lemma (van den Dries (1998))

Let $A \subset R^n$ be a definable set which is the union of definable open subsets U_1, \ldots, U_n of A. Then A is the union of definable open subsets W_1, \ldots, W_n of A with $cl_A(W_i) \subset U_i$ for $i=1,\ldots,n$, where $cl_A(W_i)$ denotes the closure of W_i in A.

• To prove Theorem, we need the following results.

Lemma (van den Dries (1998))

Let $A \subset R^n$ be a definable set which is the union of definable open subsets U_1, \ldots, U_n of A. Then A is the union of definable open subsets W_1, \ldots, W_n of A with $cl_A(W_i) \subset U_i$ for $i=1,\ldots,n$, where $cl_A(W_i)$ denotes the closure of W_i in A.

Theorem (Peterzil and Steinhorn (1999))

For a definable subset of \mathbb{R}^n , it is definably compact if and only if it is closed and bounded.

Theorem (Berarducci and M. Otero (2001))

Let $X \subset R^l$ be a definable C^r manifold and $0 \le r < \infty$. Given two disjoint definable sets $F_0, F_1 \subset X$ closed in X, there exists a definable C^r function $\delta: X \to R$ which is 0 exactly on F_0 , 1 exactly on F_2 and $0 < \delta < 1$.

Theorem (Berarducci and M. Otero (2001))

Let $X \subset \mathbb{R}^l$ be a definable \mathbb{C}^r manifold and $0 \leq r < \infty$. Given two disjoint definable sets $F_0, F_1 \subset X$ closed in X, there exists a definable C^r function $\delta: X \to R$ which is 0 exactly on F_0 , 1 exactly on F_2 and $0 \leq \delta \leq 1$.

The following result is a definable version of Sard's Theorem.

Theorem (Berarducci and M. Otero (2001))

Let $X_1 \subset R^s$ and $X_2 \subset R^t$ be definable C^r manifolds of dimension mand n, respectively. Let $f: X_1 \to X_2$ be a definable C^r map. Then the set of critical values of f has dimension less than n.

• By the above theorem, we have the following lemma.

Lemma

Let U be a definable open subset of R^m and $f:U\to R$ a definable C^r function. There exist $a_1,\ldots,a_m\in R$ such that $F(x_1,\ldots,x_m)=f(x_1,\ldots,x_m)-(a_1x_1+\cdots+a_mx_m)$ is a definable Morse function on U and $|a_1|,\ldots,|a_m|$ are sufficiently small.

• Let $\{\phi_i: U_i \to V_i\}_{i=1}^k$ be a definable C^r coordinate system of X. By the above results and since X is definably compact, shrinking $\{U_i\}_{i=1}^k$, if necessary, there exists a finite collection $\{K_i\}_{i=i}^k$ of definably compact subsets with $K_i \subset U_i$ such that $X = \bigcup_{i=1}^k K_i$. From now on we fix $\{U_i\}_{i=1}^k$ and $\{K_i\}_{i=1}^k$.

• Let $\{\phi_i: U_i \to V_i\}_{i=1}^k$ be a definable C^r coordinate system of X. By the above results and since X is definably compact, shrinking $\{U_i\}_{i=1}^k$, if necessary, there exists a finite collection $\{K_i\}_{i=i}^k$ of definably compact subsets with $K_i \subset U_i$ such that $X = \bigcup_{i=1}^k K_i$. From now on we fix $\{U_i\}_{i=1}^k$ and $\{K_i\}_{i=1}^k$. Let $f,g:X \to R$ be definable C^r functions and $\epsilon > 0$. We say that g is a (C^2,ϵ) approximation of f on a definably compact subset K of X if the following three inequalities hold for any point $p \in K$.

$$\left\{ egin{array}{l} |f(p)-g(p)|<\epsilon,\ |rac{\partial f}{\partial x_i}(p)-rac{\partial g}{\partial x_i}(p)|<\epsilon,1\leq i\leq n,\ |rac{\partial^2 f}{\partial x_i\partial x_j}(p)-rac{\partial^2 g}{\partial x_i\partial x_j}(p)|<\epsilon,1\leq i,j\leq n. \end{array}
ight.$$

Definition

Let $f: X \to R$ be a definable C^r function and $\epsilon > 0$. A definable C^r function $g: X \to R$ is a (C^2, ϵ) approximation of f if g is a (C^2, ϵ) approximation of f on any K_i .

Definition

Let $f: X \to R$ be a definable C^r function and $\epsilon > 0$. A definable C^r function $g: X \to R$ is a (C^2, ϵ) approximation of f if g is a (C^2, ϵ) approximation of f on any K_i .

Proposition

Let C be a definably compact subset of X, $h: X \to R$ a definable C^r function and $\epsilon > 0$ is sufficiently small. If there are no degenerate critical points of h in C, then for every definable C^r function $h': X \to R$ which is a (C^2, ϵ) approximation of h, C does not contain a degenerate critical point of h'. In particular $Def^r_{Morse}(X)$ is open in $Def^r(X)$ with respect to the definable C^2 topology.

• Proof of Proposition.

We consider in a definable C^r coordinate neighborhood $(U_l,(x_1,\ldots,x_m))$. Let the Hessian of h with respect to $(U_l,(x_1,\ldots,x_m))$ be $(\frac{\partial^2 h}{\partial x_l \partial x_l})$. Then h has no degenerate critical points in $C \cap K_I$ if and only if $|rac{\partial h}{\partial x_1}|+\cdots+|rac{\partial h}{\partial x_n}|+|\det(rac{\partial^2 h}{\partial x_i\partial x_i})|>0$ holds in $C\cap K_l$. If $\epsilon>0$ is sufficiently small, then for any h' which is a (C^2, ϵ) approximation of h, $\left|\frac{\partial h'}{\partial x_1}\right| + \cdots + \left|\frac{\partial h'}{\partial x_n}\right| + \left|\det\left(\frac{\partial^2 h'}{\partial x_1 \partial x_2}\right)\right| > 0$ holds in $C \cap K_l$. Thus h' has no degenerate critical points in $C \cap K_l$. By a similar

argument, h' has no degenerate critical points in $C = \cup_{i=1}^k C \cap K_l$.

• Proof of Our Theorem.

Proposition proves that $Def^r_{Morse}(X)$ is open in $Def^r(X)$. To prove density of $Def^r_{Morse}(X)$, we proceed by induction on l. Let $g:X\to R$ be a definable C^r function and $\epsilon>0$. Assume that we have a definable C^r function $f_{l-1}:X\to R$ such that f_{l-1} has no degenerate critical points in $C_{l-1}:=\cup_{i=1}^{l-1}K_i$ and it is a (C^2,δ_{l-1}) approximation of g, where $\delta_{l-1}>0$ is sufficiently smaller than ϵ .

We consider a definable C^r coordinate neighborhood $(U_l,(x_1,\ldots,x_m))$. By Lemma, there exist $a_1,\ldots,a_m\in R$ such that $f(x_1,\ldots,x_m)-(a_1x_1+\cdots+a_mx_m)$ is a definable Morse function on U_l and $|a_1|,\ldots,|a_m|$ are sufficiently small. By Theorem BO, we have a definable C^r function $h_l:X\to R$ such that h_l is identically 1 on some definable open neighborhood V_l of K_l in U_l , h_l is identically 0 outside of some definably compact set L_l with $V_l\subset L_l\subset U_l$ and $0\le h_l\le 1$.

• We define $f_l: X \to R, f_l =$ $f_{l-1}(x_1,\ldots,x_m)-(a_1x_1+\cdots+a_mx_m)h_l(x_1,\ldots,x_m)$ on U_l and $f_l = f_{l-1}(x_1, \ldots, x_m)$ outside of L_l . By the definition of f_l , f_l is a definable C^r function on X. Calculating on U_l , $|f_{l-1}(p) - f_l(p)| = |a_1x_1 + \cdots + a_mx_m|h_l(p),$ $\left|\frac{\partial f_{l-1}}{\partial p_{l}}(p) - \frac{\partial f_{l}}{\partial p_{l}}(p)\right| =$ $|a_ih_l(p)+(a_1x_1+\cdots+a_mx_m)\frac{\partial h_l}{\partial x_i}(p)|, 1\leq i\leq m,$ $|rac{\partial^2 f_{l-1}}{\partial x_i \partial x_j}(p) - rac{\partial^2 f_l}{\partial x_i \partial x_j}(p)| = |a_i rac{\partial h_l}{\partial x_i}(p) + a_j rac{\partial h_l}{\partial x_i}(p) + (a_1 x_1 + a_2 x_1 + a_3 x_2 x_2)|$ $\cdots + a_m x_m \frac{\partial^2 h_l}{\partial x_i \partial x_j}(p) |, 1 \leq i, j \leq m,$ where $p = (x_1, \ldots, x_m)$. By the construction of h_l and since X is definably compact, $|h_l|, |\frac{\partial h_l}{\partial x_i}|, |\frac{\partial^2 h_l}{\partial x_i \partial x_i}|$ are bounded. Thus f_l is a (C^2, δ_l') approximation of f_{l-1} on K_l if $|a_1|, \ldots, |a_m| > 0$ are sufficiently small.

• We now consider on K_i when $j \neq l$. Since $f_{l-1} = f_l$ outside of L_l , we only have to evaluate them on $K_i \cap L_l$. Since $K_i \cap L_l \subset U_i \cap U_l$, they are evaluated by the Jacobian of $(U_i,(y_1,\ldots,y_m))$ between $(U_l,(x_1,\ldots,x_m))$. It is bounded on $K_i \cap L_l$ because $K_i \cap L_l$ is definably compact. Thus they are sufficiently small if $|a_1|, \ldots, |a_m| > 0$ are sufficiently small. Hence f_l is a (C^2, δ_l) approximation of f_{l-1} . By Proposition, f_l has no degenerate critical points in C_{l-1} . By the construction of f_l , f_l has no degenerate critical points in K_l . Thus there are no degenerate critical points of f_l in $C_l := \bigcup_{i=1}^l K_i$. Therefore $f_k : X \to R$ is the required definable Morse function on X.