O-minimal structures

Tomohiro kawakami

Wakayama University

2011.8.29

Structures

• A structure $\mathcal{N}=(R,(S_i)_{i\in I},(f_j)_{j\in J})$ consisting of a nonempty set R, relations $S_i\subset R^{m(i)}\ (i\in I,m(i)\in\mathbb{N}\cup\{0\})$ and functions $f_j:R^{n(j)}\to R\ (j\in J,n(j)\in\mathbb{N}\cup\{0\})$ If n(j)=0, then we identify f_j with its unique vale in R, and call f_j a constant. R is called the universe of \mathcal{N} or the underlying set of \mathcal{N}

Structures

• A structure $\mathcal{N}=(R,(S_i)_{i\in I},(f_j)_{j\in J})$ consisting of a nonempty set R, relations $S_i\subset R^{m(i)}$ $(i\in I,m(i)\in\mathbb{N}\cup\{0\})$ and functions $f_j:R^{n(j)}\to R$ $(j\in J,n(j)\in\mathbb{N}\cup\{0\})$ If n(j)=0, then we identify f_j with its unique vale in R, and call f_j a constant. R is called the universe of $\mathcal N$ or the underlying set of $\mathcal N$ We say that f (resp. R) is an m-place function (resp. an m-place relation) if $f:R^m\to R$ is a function (resp. $R\subset R^m$ is a relation).

Terms

Terms

A term is a finite string of symbols obtained by repeated applications of the following two rules:

- Variables are terms.
- ② If f is an m-place function of $\mathcal N$ and t_1,\ldots,t_m are terms, then the concatenated string $f(t_1,\ldots,t_m)$ is a term.

Note that if m=0, then the second rule says that constants (0-place function) are terms.

Formulas

Formulas

A formula is a finite string of symbols $s_1 \dots s_k$, where each s_i is either a variable, a function symbol, a relation symbol, one of the logical symbols $=, \neg, \lor, \land, \exists, \forall$, one of the brackets (,), or comma ,. Arbitrary formulas are generated inductively by the following three rules:

- lacksquare For any two terms t_1 and t_2 , $t_1=t_2$ is a formula.
- 2 If R is an m-place relation and t_1,\ldots,t_m are terms, then $R(t_1,\ldots,t_m)$ is a formula.
- **3** If ϕ and ψ are formulas, then the negation $\neg \phi$, the disjunction $\phi \lor \psi$, and the conjunction $\phi \land \psi$ are formulas. If ϕ is a formula and v is a variable, then $(\exists v)\phi$ and $(\forall v)\phi$ are formulas.

Let $\mathcal{N}=(R,<,\cdots)$ be an ordered structure. The order < is linear if for any $x,y\in R$, exactly one of

The order < is linear if for any $x,y \in R$, exactly one of x < y, x = y, x > y holds.

We say that < is dense if for all $x,y \in R$ with x < y, there exists $z \in R$ with x < z < y, and say that < has no endpoints if for any $x \in R$, there exist $y,z \in R$ such that y < x < z.

Let $\mathcal{N}=(R,<,\cdots)$ be an ordered structure.

The order < is linear if for any $x,y\in R$, exactly one of x< y, x=y, x>y holds.

We say that < is dense if for all $x,y \in R$ with x < y, there exists $z \in R$ with x < z < y, and say that < has no endpoints if for any $x \in R$, there exist $y,z \in R$ such that y < x < z.

For convenience, we add two endpoint $-\infty$ and ∞ , with $-\infty < x < \infty$ for all $x \in R$.

An open interval (a,b) means $\{x \in R | a < x < b\}$ with $-\infty \le a < b \le \infty$.

Let $\mathcal{N}=(R,<,\cdots)$ be an ordered structure.

The order < is linear if for any $x,y\in R$, exactly one of x< y, x=y, x>y holds.

We say that < is dense if for all $x,y \in R$ with x < y, there exists $z \in R$ with x < z < y, and say that < has no endpoints if for any $x \in R$, there exist $y,z \in R$ such that y < x < z. For convenience, we add two endpoint $-\infty$ and ∞ , with $-\infty < x < \infty$

For convenience, we add two endpoint $-\infty$ and ∞ , with $-\infty < x < \infty$ for all $x \in R$.

An open interval (a,b) means $\{x \in R | a < x < b\}$ with $-\infty \le a < b \le \infty$.

From now on, we only consider a dense linearly ordered structure $\mathcal{N}=(R,<,\cdots)$ without endpoints.

O-minimal structures (Order minimal structures)

O-minimal structures (Order minimal structures)

We call $\mathcal N$ o-minimal (order minimal) if every definable subset of R is a finite union of points and open intervals.

O-minimal structures (Order minimal structures)

We call $\mathcal N$ o-minimal (order minimal) if every definable subset of R is a finite union of points and open intervals.

From now on, we only consider an o-minimal structure $\mathcal{N}=(R,<,\cdots)$.

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

- O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:
 - (1) The field \mathbb{R} of real numbers.

- O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:
 - (1) The field \mathbb{R} of real numbers.
 - (2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ that vanish identically outside $[-1,1]^n$ and whose restrictions to $[-1,1]^n$ are analytic.

- O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:
 - (1) The field \mathbb{R} of real numbers.
 - (2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ that vanish identically outside $[-1,1]^n$ and whose restrictions to $[-1,1]^n$ are analytic.
 - (3) $\mathbf{R}_{an}^S := (\mathbb{R}, +, \cdot, <, (f), (x^r)_{r \in S})$, where S is a subset of \mathbb{R} , f ranges over all restricted analytic functions as in (2), and the function $x^r : \mathbb{R} \to \mathbb{R}$ is given by

$$a \mapsto \left\{ egin{array}{ll} a^r, & a>0 \ 0, & a\leq 0 \end{array}
ight..$$

- O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:
 - (1) The field \mathbb{R} of real numbers.
 - (2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ that vanish identically outside $[-1,1]^n$ and whose restrictions to $[-1,1]^n$ are analytic.
 - (3) $\mathbf{R}_{an}^S := (\mathbb{R}, +, \cdot, <, (f), (x^r)_{r \in S})$, where S is a subset of \mathbb{R} , f ranges over all restricted analytic functions as in (2), and the function $x^r : \mathbb{R} \to \mathbb{R}$ is given by

$$a \mapsto \left\{ egin{array}{ll} a^r, & a>0 \ 0, & a\leq 0 \end{array}
ight..$$

(4) $\mathbf{R}_{exp} := (\mathbb{R}, +, \cdot, <, exp)$, where $exp : \mathbb{R} \to \mathbb{R}$ denotes the exponential function $x \mapsto e^x$.

- O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:
 - (1) The field \mathbb{R} of real numbers.
 - (2) $\mathbf{R}_{an}:=(\mathbb{R},+,\cdot,<,(f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n\to\mathbb{R}, n\in\mathbb{N}$ that vanish identically outside $[-1,1]^n$ and whose restrictions to $[-1,1]^n$ are analytic.
 - (3) $\mathbf{R}_{an}^S := (\mathbb{R}, +, \cdot, <, (f), (x^r)_{r \in S})$, where S is a subset of \mathbb{R} , f ranges over all restricted analytic functions as in (2), and the function $x^r : \mathbb{R} \to \mathbb{R}$ is given by

$$a \mapsto \left\{ egin{array}{ll} a^r, & a>0 \ 0, & a\leq 0 \end{array}
ight..$$

- (4) $\mathbf{R}_{exp} := (\mathbb{R}, +, \cdot, <, exp)$, where $exp : \mathbb{R} \to \mathbb{R}$ denotes the exponential function $x \mapsto e^x$.
- (5) $\mathbf{R}_{an,exp} := (\mathbb{R},+,\cdot,<,(f),exp)$, where (f) and exp denote as above.

The topology of R^n

The topology of \mathbb{R}^n

We equip R with the interval topology (the intervals form a base), and each product R^n with the corresponding product topology. Note that R^n is a Hausdorff space with this topology.

Monotonicity theorem

Monotonicity theorem

Let $\mathcal{N}=(R,<,\dots)$ be an o-minimal structure and $X\subset R^n,Y\subset R^m$ definable sets. We say that a map $f:X\to Y$ is a definable map if the graph $\{(x,f(x))\in X\times Y|x\in X\}\subset R^n\times R^m$ is a definable set.

Monotonicity theorem

Let $\mathcal{N}=(R,<,\dots)$ be an o-minimal structure and $X\subset R^n, Y\subset R^m$ definable sets. We say that a map $f:X\to Y$ is a definable map if the graph $\{(x,f(x))\in X\times Y|x\in X\}\subset R^n\times R^m$ is a definable set.

Theorem (Monotonicity theorem)

Let $f:(a,b)\to R$ be a definable function on the interval (a,b). Then there exist points $a=a_0< a_1< \cdots < a_k< a_{k+1}=b$ in (a,b) such that on each subinterval (a_j,a_{j+1}) , the restriction $f|(a_j,a_{j+1})$ is either constant, or strictly monotone and continuous.

Let $\mathcal{N}=(R,<,\dots)$ be an o-minimal structure. For each definable set X in R^n , we put

$$C(X) = \{f: X \to R | f \text{ is definable and continuous } \},$$

$$C_{\infty}(X) = C(X) \cup \{+\infty, -\infty\},$$

where we regard $+\infty$ and $-\infty$ as constant functions on X.

Let $\mathcal{N} = (R, <, \dots)$ be an o-minimal structure.

For each definable set X in \mathbb{R}^n , we put

$$C(X) = \{f : X \to R | f \text{ is definable and continuous } \},$$

$$C_{\infty}(X) = C(X) \cup \{+\infty, -\infty\},$$

where we regard $+\infty$ and $-\infty$ as constant functions on X. For $f,g\in C_\infty(X)$, we write f< g if f(x)< g(x) for all $x\in X$, and in this case we put

$$(f,g)_X = \{(x,r) \in X \times R | f(x) < r < g(x) \}.$$

 $(f,g)_X$ is a definable subset of \mathbb{R}^{n+1} .

Let (i_1, \ldots, i_n) be a sequence of zeros and ones of length n. An (i_1, \ldots, i_n) cell is a definable subset of \mathbb{R}^n obtained by induction on n as follows:

- lacksquare a (0) cell is a one-element set $\{r\}\subset R$ (a point), a (1) cell is an interval $(a,b)\subset R$.
- ② suppose (i_1,\ldots,i_n) cells are already defined. Then an $(i_1,\ldots,i_n,0)$ cell is the graph $\Gamma(f)$ of a function $f\in C(X)$, where X is an (i_1,\ldots,i_n) cell. As $(i_1,\ldots,i_n,1)$ cell is a set $(f,g)_X$, where X is an (i_1,\ldots,i_n) cell and $f,g\in C_\infty(X), f< g$.

Let (i_1, \ldots, i_n) be a sequence of zeros and ones of length n. An (i_1, \ldots, i_n) cell is a definable subset of \mathbb{R}^n obtained by induction on n as follows:

- lacksquare a (0) cell is a one-element set $\{r\}\subset R$ (a point), a (1) cell is an interval $(a,b)\subset R$.
- ② suppose (i_1,\ldots,i_n) cells are already defined. Then an $(i_1,\ldots,i_n,0)$ cell is the graph $\Gamma(f)$ of a function $f\in C(X)$, where X is an (i_1,\ldots,i_n) cell. As $(i_1,\ldots,i_n,1)$ cell is a set $(f,g)_X$, where X is an (i_1,\ldots,i_n) cell and $f,g\in C_\infty(X), f< g$.

A cell in \mathbb{R}^n is an (i_1, \ldots, i_n) cell, for some sequence (i_1, \ldots, i_n) . The $(1, \ldots, 1)$ cells are exactly the cells which are open in \mathbb{R}^n .

Definition

A decomposition of \mathbb{R}^n is a special kind of partition of \mathbb{R}^n into finitely many cells. The definition is by induction on n.

lacksquare A decomposition of $oldsymbol{R}$ is a collection

$$\{(-\infty,a_1),(a_1,a_2),\ldots,(a_k,\infty),\{a_1\},\ldots,\{a_k\}\},$$

where $a_1 < \cdots < a_k$ are points in R.

- ② A a finite partition of R^{n+1} into cells A such that the set of projections $\pi(A)$ is a decomposition of R^n , where $\pi: R^{n+1} \to R^n, \pi(x_1, \ldots, x_n, x_{n+1}) = (x_1, \ldots, x_n)$.
- **3** A decomposition \mathcal{D} of R^n is said to partition a set $S \subset R^n$ if each cell in \mathcal{D} is either part of S or disjoint from S.

Theorem (Cell decomposition theorem)

- Given any definable sets $A_1, \ldots, A_k \subset R^n$, there exists a decomposition of R^n partitioning each of A_1, \ldots, A_k .
- ② For each definable function $f: A \to R, A \subset R^n$, there exists a decomposition \mathcal{D} of R^n partitioning A such that the restriction $f|B:B\to R$ to each cell $B\in \mathcal{D}$ with $B\subset A$ is continuous.

Theorem (Cell decomposition theorem)

- Given any definable sets $A_1, \ldots, A_k \subset R^n$, there exists a decomposition of R^n partitioning each of A_1, \ldots, A_k .
- ② For each definable function $f:A\to R, A\subset R^n$, there exists a decomposition $\mathcal D$ of R^n partitioning A such that the restriction $f|B:B\to R$ to each cell $B\in \mathcal D$ with $B\subset A$ is continuous.

A set $Y\subset R^{n+1}$ is finite over R^n if for each $x\in R^n$, the fiber $Y_x=\{r\in R|(x,r)\in Y\}$ is finite. We call Y uniformly finite over R^n if there exists $N\in \mathbb{N}$ such that $|Y_x|\leq N$ for all $x\in R^n$.

Theorem (Uniform finiteness)

Suppose that a definable subset A of \mathbb{R}^{n+1} is finite over \mathbb{R}^n . Then Y is uniformly finite.

Let $\mathcal{N}=(R,+,\cdot,<,\dots)$ be an o-minimal expansion of a real closed field.

Let $X\subset R^n$ be a definable open set and r a positive integer. A definable map $f:X\to R^n$ is a definable C^r map if f is of class C^r .

A definable map $f:A\to R^n$, where $A\subset R^m$ is not necessarily open, is a definable C^r map if there exist a definable open set $U\subset R^m$

containing A and a definable C^r map $F:U o R^n$ such that f=F|A.

Let $\mathcal{N}=(R,+,\cdot,<,\dots)$ be an o-minimal expansion of a real closed field.

Let $X\subset R^n$ be a definable open set and r a positive integer. A definable map $f:X\to R^n$ is a definable C^r map if f is of class C^r . A definable map $f:A\to R^n$, where $A\subset R^m$ is not necessarily open, is a definable C^r map if there exist a definable open set $U\subset R^m$ containing A and a definable C^r map $F:U\to R^n$ such that f=F|A. we put

$$C^r(X) = \{f: X \to R | f \text{ is definable and of class } C^r\},$$

$$C^r_{\infty}(X) = C^r(X) \cup \{+\infty, -\infty\},$$

where we regard $+\infty$ and $-\infty$ as constant functions on X.

Let $\mathcal{N}=(R,+,\cdot,<,\dots)$ be an o-minimal expansion of a real closed field.

Let $X\subset R^n$ be a definable open set and r a positive integer. A definable map $f:X\to R^n$ is a definable C^r map if f is of class C^r .

A definable map $f:A\to R^n$, where $A\subset R^m$ is not necessarily open, is a definable C^r map if there exist a definable open set $U\subset R^m$ containing A and a definable C^r map $F:U\to R^n$ such that f=F|A. we put

$$C^r(X) = \{f: X \to R | f \text{ is definable and of class } C^r\},$$

$$C^r_{\infty}(X) = C^r(X) \cup \{+\infty, -\infty\},$$

where we regard $+\infty$ and $-\infty$ as constant functions on X.

For $f,g \in C^r_\infty(X)$, we write f < g if f(x) < g(x) for all $x \in X$, and in this case we put

$$(f,g)_X = \{(x,r) \in X \times R | f(x) < r < g(x) \}.$$

Let (i_1, \ldots, i_n) be a sequence of zeros and ones of length n. An (i_1, \ldots, i_n) C^r cell is a definable subset of R^n obtained by induction on n as follows:

- lacksquare a (0) C^r cell is a one-element set $\{r\}\subset R$ (a point), a (1) C^r cell is an interval $(a,b)\subset R$.
- ② suppose (i_1,\ldots,i_n) cells are already defined. Then an $(i_1,\ldots,i_n,0)$ C^r cell is the graph $\Gamma(f)$ of a function $f\in C^r(X)$, where X is an (i_1,\ldots,i_n) C^r cell. As $(i_1,\ldots,i_n,1)$ C^r cell is a set $(f,g)_X$, where X is an (i_1,\ldots,i_n) C^r cell and $f,g\in C^r_\infty(X),f< g$.

Definition

A decomposition of \mathbb{R}^n is a special kind of partition of \mathbb{R}^n into finitely many \mathbb{C}^r cells. The definition is by induction on n.

lacksquare A decomposition of R is a collection

$$\{(-\infty,a_1),(a_1,a_2),\ldots,(a_k,\infty),\{a_1\},\ldots,\{a_k\}\},$$

where $a_1 < \cdots < a_k$ are points in R.

- ② A a finite partition of R^{n+1} into C^r cells A such that the set of projections $\pi(A)$ is a decomposition of R^n , where $\pi: R^{n+1} \to R^n, \pi(x_1, \ldots, x_n, x_{n+1}) = (x_1, \ldots, x_n).$
- **3** A decomposition \mathcal{D} of R^n is said to partition a set $S \subset R^n$ if each C^r cell in \mathcal{D} is either part of S or disjoint from S.

Theorem (C^r Cell decomposition theorem)

- Given any definable sets $A_1, \ldots, A_k \subset R^n$, there exists a decomposition of R^n partitioning each of A_1, \ldots, A_k .
- ② For each definable function $f:A\to R, A\subset R^n$, there exists a decomposition $\mathcal D$ of R^n partitioning A such that the restriction $f|B:B\to R$ to each C^r cell $B\in \mathcal D$ with $B\subset A$ is of class C^r .

18 / 24

Let $\mathcal{N}=(R,+,\cdot,<,\dots)$ be an o-minimal expansion of a real closed field.

An affine subspace of \mathbb{R}^n of dimension d is a translate L+a of a linear subspace L of \mathbb{R}^n of dimension d.

A tuple a_0, \ldots, a_k of points in \mathbb{R}^n is affine independent if the smallest affine subspace containing a_0, \ldots, a_k has dimension k.

Let $\mathcal{N}=(R,+,\cdot,<,\dots)$ be an o-minimal expansion of a real closed field.

An affine subspace of \mathbb{R}^n of dimension d is a translate L+a of a linear subspace L of \mathbb{R}^n of dimension d.

A tuple a_0, \ldots, a_k of points in \mathbb{R}^n is affine independent if the smallest affine subspace containing a_0, \ldots, a_k has dimension k.

An affine independent tuple of points $a_0, \ldots a_k$ of R^n , we call

$$(a_0,\ldots,a_k)=\{\sum_{i=1}^k t_i a_i| ext{ all } t_i>0,\sum_{i=1}^k t_i=1\}$$
 a k -simplex.

Let $\mathcal{N}=(R,+,\cdot,<,\dots)$ be an o-minimal expansion of a real closed field.

An affine subspace of \mathbb{R}^n of dimension d is a translate L+a of a linear subspace L of \mathbb{R}^n of dimension d.

A tuple a_0, \ldots, a_k of points in R^n is affine independent if the smallest affine subspace containing a_0, \ldots, a_k has dimension k.

An affine independent tuple of points $a_0, \ldots a_k$ of R^n , we call $(a_0, \ldots, a_k) = \{\sum_{i=1}^k t_i a_i | \text{ all } t_i > 0, \sum_{i=1}^k t_i = 1\}$ a k-simplex. A complex K in R^n is a finite collection of simplexes in R^n such that for all $\sigma_1, \sigma_2 \in K$, either $\overline{\sigma_1} \cap \overline{\sigma_2} = \emptyset$, or $\overline{\sigma_1} \cap \overline{\sigma_2} = \overline{\tau}$ for some common face τ of σ_1 and σ_2 . Here $\overline{\sigma_1}$ (resp. $\overline{\sigma_2}$, $\overline{\tau}$) denotes the closure of σ_1 (resp. σ_2 , τ) in R^n . Notice that τ is not required to belong to K. A complex is called closed if it contains all its faces of each simplex. Note that a complex K in R^n is closed if and only if |K| is closed in R^n .

Definition

Let $A \subset R^n$ be a definable set. A definable triangulation in R^n of A is a pair (ψ, K) consisting of a complex K in R^n and a definable homeomorphism $\psi \colon A \to |K|$. The triangulation is said to be compatible with a definable subset $B \subset A$ if B is a union of some elements of $\psi^{-1}(K)$.

Definition

Let $A \subset R^n$ be a definable set. A definable triangulation in R^n of A is a pair (ψ, K) consisting of a complex K in R^n and a definable homeomorphism $\psi \colon A \to |K|$. The triangulation is said to be compatible with a definable subset $B \subset A$ if B is a union of some elements of $\psi^{-1}(K)$.

Theorem (Triangulation theorem)

Let $S \subset \mathbb{R}^n$ be a definable set and $S_1, \ldots S_k$ definable subsets of S. Then S has a triangulation in \mathbb{R}^n which is compatible with S_1, \ldots, S_k .

Piecewise trivialization theorem

Piecewise trivialization theorem

Let $\mathcal{N}=(R,+,\cdot,<,\dots)$ be an o-minimal expansion of a real closed field.

Definition

Let $A \subset R^m$, $S \subset R^n$ be definable sets, and let $f: S \to A$ be a definable continuous map. We say that f is definably trivial if there exist a definable set $F \subset R^N$ for some $N \in \mathbb{N}$, and a definable continuous map $h: S \to F$ such that $(f,h): S \to A \times F$ is a definable homeomorphism. In this case, each fiber $f^{-1}(a)$ of f over a is definably homeomorphic to F. For a definable subset $B \subset A$, we call f definably trivial over B if the restriction $f|_{f^{-1}(B)}: f^{-1}(B) \to B$ is definably trivial.

Piecewise trivialization theorem

Let $\mathcal{N}=(R,+,\cdot,<,\dots)$ be an o-minimal expansion of a real closed field.

Definition

Let $A \subset R^m$, $S \subset R^n$ be definable sets, and let $f: S \to A$ be a definable continuous map. We say that f is definably trivial if there exist a definable set $F \subset R^N$ for some $N \in \mathbb{N}$, and a definable continuous map $h: S \to F$ such that $(f,h): S \to A \times F$ is a definable homeomorphism. In this case, each fiber $f^{-1}(a)$ of f over a is definably homeomorphic to F. For a definable subset $B \subset A$, we call f definably trivial over B if the restriction $f|_{f^{-1}(B)}: f^{-1}(B) \to B$ is definably trivial.

Theorem (Piecewise trivialization theorem)

Let $f: S \to A$ be a definable continuous map. Then there exists a finite partition $A = A_1 \cup \cdots \cup A_m$ of A into definable sets A_i such that f is definably trivial over each A_i .

Let $\mathcal{N}=(R,+,\cdot,<,\dots)$ be an o-minimal expansion of a real closed field.

Definition

Let $E \subset X \times X$ be a definable equivalence relation on a definable set $X \subset R^n$. A definably proper quotient of X by E is a pair (p,Y) consisting of a definable set $Y \subset R^m$ and a definable continuous surjective map $p: X \to Y$ such that

- $oldsymbol{0} E=E_p$, that is $(x_1,x_2)\in E\Leftrightarrow p(x_1)=p(x_2)$ for all $x_1,x_2\in X$.
- ② For each definable set $K \subset Y$, if $p^{-1}(K)$ is closed and bounded in R^n , then K is closed and bounded in R^m .

Definition

Let E be a definable equivalence relation on a definable set X and $pr_1: X \times X \to X, pr_2: X \times X \to X$ the restrictions of the two projections $X \times X \to X$. We call E definably proper over X if pr_1 is a definably proper map.

Theorem

Suppose the definable equivalence relation E on the definable set X is definably proper over X. Then X/E exists as a definably proper quotient of X.

Namely X/E is a definable set and the projection $p:X\to X/E$ is a definably proper definable surjective continuous map.

Theorem

Suppose the definable equivalence relation E on the definable set X is definably proper over X. Then X/E exists as a definably proper quotient of X.

Namely X/E is a definable set and the projection $p:X\to X/E$ is a definably proper definable surjective continuous map.

Theorem

If $X \subset R^n$ is closed and bounded and $E \subset X \times X$ is a closed definable equivalence relation, then X/E exists as a definably proper quotient of X. Namely X/E is a definable set and the projection $p: X \to X/E$ is a definably proper definable surjective continuous map.

A definable subset $X\subset R^n$ is definably compact if for any definable map $f:(a,b)\to X$, there exist the limits $\lim_{x\to a+0}f(x),\lim_{x\to b-0}f(x)$ in X.

Theorem (Peterzil and Steinhorn 1999)

For a definable subset of \mathbb{R}^n , it is definably compact if and only if it is closed and bounded.

A definable set $G \subset \mathbb{R}^n$ is a definable group if G is a group and the group operations $G \times G \to G, G \to G$ are definable and continuous.

Corollary

If G is a definably compact group and G acts a definable set X definably and continuously, then the orbit space X/G is a definable set and the orbit map $p:X\to X/G$ is a definably proper definable surjective continuous map.