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Structures

A structure N = (R, (Si)i2I , (fj)j2J) consisting of
a nonempty set R,
relations Si ⊂ Rm(i) (i ∈ I, m(i) ∈ N ∪ {0}) and
functions fj : Rn(j) → R (j ∈ J, n(j) ∈ N ∪ {0})
If n(j) = 0, then we identify fj with its unique vale in R, and call
fj a constant.
R is called the universe of N or the underlying set of N
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relations Si ⊂ Rm(i) (i ∈ I, m(i) ∈ N ∪ {0}) and
functions fj : Rn(j) → R (j ∈ J, n(j) ∈ N ∪ {0})
If n(j) = 0, then we identify fj with its unique vale in R, and call
fj a constant.
R is called the universe of N or the underlying set of N
We say that f (resp. R) is an m-place function (resp. an m-place
relation) if f : Rm → R is a function (resp. R ⊂ Rm is a relation).
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Terms

A term is a finite string of symbols obtained by repeated applications of
the following two rules:

.

.
.

1 Variables are terms.

.

.

.

2 If f is an m-place function of N and t1, . . . , tm are terms, then the
concatenated string f(t1, . . . , tm) is a term.

Note that if m = 0, then the second rule says that constants (0-place
function) are terms.
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Formulas

A formula is a finite string of symbols s1 . . . sk, where each si is either a
variable, a function symbol, a relation symbol, one of the logical symbols
=, ¬, ∨, ∧, ∃, ∀, one of the brackets (, ), or comma ,. Arbitrary formulas
are generated inductively by the following three rules:

.

.

.

1 For any two terms t1 and t2, t1 = t2 is a formula.

.

.

.

2 If R is an m-place relation and t1, . . . , tm are terms, then
R(t1, . . . , tm) is a formula.

.

.

.

3 If φ and ψ are formulas, then the negation ¬φ, the disjunction
φ ∨ ψ, and the conjunction φ ∧ ψ are formulas. If φ is a formula
and v is a variable, then (∃v)φ and (∀v)φ are formulas.
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Dense linear order without endpoints

Let N = (R, <, · · · ) be an ordered structure.
The order < is linear if for any x, y ∈ R, exactly one of
x < y, x = y, x > y holds.
We say that < is dense if for all x, y ∈ R with x < y, there exists
z ∈ R with x < z < y, and say that < has no endpoints if for any
x ∈ R, there exist y, z ∈ R such that y < x < z.
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Let N = (R, <, · · · ) be an ordered structure.
The order < is linear if for any x, y ∈ R, exactly one of
x < y, x = y, x > y holds.
We say that < is dense if for all x, y ∈ R with x < y, there exists
z ∈ R with x < z < y, and say that < has no endpoints if for any
x ∈ R, there exist y, z ∈ R such that y < x < z.
For convenience, we add two endpoint −∞ and ∞, with −∞ < x < ∞
for all x ∈ R.
An open interval (a, b) means {x ∈ R|a < x < b} with
−∞ ≤ a < b ≤ ∞.
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We say that < is dense if for all x, y ∈ R with x < y, there exists
z ∈ R with x < z < y, and say that < has no endpoints if for any
x ∈ R, there exist y, z ∈ R such that y < x < z.
For convenience, we add two endpoint −∞ and ∞, with −∞ < x < ∞
for all x ∈ R.
An open interval (a, b) means {x ∈ R|a < x < b} with
−∞ ≤ a < b ≤ ∞.
From now on, we only consider a dense linearly ordered structure
N = (R, <, · · · ) without endpoints.
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O-minimal structures (Order minimal structures)

We call N o-minimal (order minimal) if every definable subset of R is a
finite union of points and open intervals.
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O-minimal structures (Order minimal structures)

We call N o-minimal (order minimal) if every definable subset of R is a
finite union of points and open intervals.
From now on, we only consider an o-minimal structure N = (R, <, · · · ).
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Examples of o-minimal structures

O-minimal structures are a class of ordered structures generalizing
interesting classical structures such as:

(1) The field R of real numbers.
(2) Ran := (R, +, ·, <, (f)), where f ranges over all restricted
analytic functions, namely all functions Rn → R, n ∈ N that vanish
identically outside [−1, 1]n and whose restrictions to [−1, 1]n are
analytic.
(3) RS

an := (R, +, ·, <, (f), (xr)r2S), where S is a subset of R, f
ranges over all restricted analytic functions as in (2), and the function
xr : R → R is given by

a 7→
{

ar, a > 0
0, a ≤ 0

.

(4) Rexp := (R, +, ·, <, exp), where exp : R → R denotes the
exponential function x 7→ ex.
(5) Ran;exp := (R, +, ·, <, (f), exp), where (f) and exp denote
as above.

Tomohiro kawakami (Wakayama University) O-minimal structures 2011.8.29 7 / 24



Examples of o-minimal structures

O-minimal structures are a class of ordered structures generalizing
interesting classical structures such as:
(1) The field R of real numbers.

(2) Ran := (R, +, ·, <, (f)), where f ranges over all restricted
analytic functions, namely all functions Rn → R, n ∈ N that vanish
identically outside [−1, 1]n and whose restrictions to [−1, 1]n are
analytic.
(3) RS

an := (R, +, ·, <, (f), (xr)r2S), where S is a subset of R, f
ranges over all restricted analytic functions as in (2), and the function
xr : R → R is given by

a 7→
{

ar, a > 0
0, a ≤ 0

.

(4) Rexp := (R, +, ·, <, exp), where exp : R → R denotes the
exponential function x 7→ ex.
(5) Ran;exp := (R, +, ·, <, (f), exp), where (f) and exp denote
as above.

Tomohiro kawakami (Wakayama University) O-minimal structures 2011.8.29 7 / 24



Examples of o-minimal structures

O-minimal structures are a class of ordered structures generalizing
interesting classical structures such as:
(1) The field R of real numbers.
(2) Ran := (R, +, ·, <, (f)), where f ranges over all restricted
analytic functions, namely all functions Rn → R, n ∈ N that vanish
identically outside [−1, 1]n and whose restrictions to [−1, 1]n are
analytic.

(3) RS
an := (R, +, ·, <, (f), (xr)r2S), where S is a subset of R, f

ranges over all restricted analytic functions as in (2), and the function
xr : R → R is given by

a 7→
{

ar, a > 0
0, a ≤ 0

.

(4) Rexp := (R, +, ·, <, exp), where exp : R → R denotes the
exponential function x 7→ ex.
(5) Ran;exp := (R, +, ·, <, (f), exp), where (f) and exp denote
as above.

Tomohiro kawakami (Wakayama University) O-minimal structures 2011.8.29 7 / 24



Examples of o-minimal structures

O-minimal structures are a class of ordered structures generalizing
interesting classical structures such as:
(1) The field R of real numbers.
(2) Ran := (R, +, ·, <, (f)), where f ranges over all restricted
analytic functions, namely all functions Rn → R, n ∈ N that vanish
identically outside [−1, 1]n and whose restrictions to [−1, 1]n are
analytic.
(3) RS

an := (R, +, ·, <, (f), (xr)r2S), where S is a subset of R, f
ranges over all restricted analytic functions as in (2), and the function
xr : R → R is given by

a 7→
{

ar, a > 0
0, a ≤ 0

.

(4) Rexp := (R, +, ·, <, exp), where exp : R → R denotes the
exponential function x 7→ ex.
(5) Ran;exp := (R, +, ·, <, (f), exp), where (f) and exp denote
as above.

Tomohiro kawakami (Wakayama University) O-minimal structures 2011.8.29 7 / 24



Examples of o-minimal structures

O-minimal structures are a class of ordered structures generalizing
interesting classical structures such as:
(1) The field R of real numbers.
(2) Ran := (R, +, ·, <, (f)), where f ranges over all restricted
analytic functions, namely all functions Rn → R, n ∈ N that vanish
identically outside [−1, 1]n and whose restrictions to [−1, 1]n are
analytic.
(3) RS

an := (R, +, ·, <, (f), (xr)r2S), where S is a subset of R, f
ranges over all restricted analytic functions as in (2), and the function
xr : R → R is given by

a 7→
{

ar, a > 0
0, a ≤ 0

.

(4) Rexp := (R, +, ·, <, exp), where exp : R → R denotes the
exponential function x 7→ ex.

(5) Ran;exp := (R, +, ·, <, (f), exp), where (f) and exp denote
as above.

Tomohiro kawakami (Wakayama University) O-minimal structures 2011.8.29 7 / 24



Examples of o-minimal structures

O-minimal structures are a class of ordered structures generalizing
interesting classical structures such as:
(1) The field R of real numbers.
(2) Ran := (R, +, ·, <, (f)), where f ranges over all restricted
analytic functions, namely all functions Rn → R, n ∈ N that vanish
identically outside [−1, 1]n and whose restrictions to [−1, 1]n are
analytic.
(3) RS

an := (R, +, ·, <, (f), (xr)r2S), where S is a subset of R, f
ranges over all restricted analytic functions as in (2), and the function
xr : R → R is given by

a 7→
{

ar, a > 0
0, a ≤ 0

.

(4) Rexp := (R, +, ·, <, exp), where exp : R → R denotes the
exponential function x 7→ ex.
(5) Ran;exp := (R, +, ·, <, (f), exp), where (f) and exp denote
as above.

Tomohiro kawakami (Wakayama University) O-minimal structures 2011.8.29 7 / 24



The topology of Rn
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The topology of Rn

We equip R with the interval topology (the intervals form a base), and
each product Rn with the corresponding product topology.
Note that Rn is a Hausdorff space with this topology.
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Monotonicity theorem

Let N = (R, <, . . . ) be an o-minimal structure and
X ⊂ Rn, Y ⊂ Rm definable sets. We say that a map f : X → Y is a
definable map if the graph {(x, f(x)) ∈ X × Y |x ∈ X} ⊂ Rn × Rm

is a definable set.
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Monotonicity theorem

Let N = (R, <, . . . ) be an o-minimal structure and
X ⊂ Rn, Y ⊂ Rm definable sets. We say that a map f : X → Y is a
definable map if the graph {(x, f(x)) ∈ X × Y |x ∈ X} ⊂ Rn × Rm

is a definable set.

.

Theorem (Monotonicity theorem)

.

.

.

. ..

.

.

Let f : (a, b) → R be a definable function on the interval (a, b). Then
there exist points a = a0 < a1 < · · · < ak < ak+1 = b in (a, b) such
that on each subinterval (aj, aj+1), the restriction f |(aj, aj+1) is either
constant, or strictly monotone and continuous.
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Cell decomposition theorem

Let N = (R, <, . . . ) be an o-minimal structure.
For each definable set X in Rn, we put

C(X) = {f : X → R|f is definable and continuous },

C1(X) = C(X) ∪ {+∞, −∞},

where we regard +∞ and −∞ as constant functions on X.
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Let N = (R, <, . . . ) be an o-minimal structure.
For each definable set X in Rn, we put

C(X) = {f : X → R|f is definable and continuous },

C1(X) = C(X) ∪ {+∞, −∞},

where we regard +∞ and −∞ as constant functions on X.
For f, g ∈ C1(X), we write f < g if f(x) < g(x) for all x ∈ X, and
in this case we put

(f, g)X = {(x, r) ∈ X × R|f(x) < r < g(x)}.

(f, g)X is a definable subset of Rn+1.
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Cell decomposition theorem

Let (i1, . . . , in) be a sequence of zeros and ones of length n. An
(i1, . . . , in) cell is a definable subset of Rn obtained by induction on n
as follows:

.

.
.

1 a (0) cell is a one-element set {r} ⊂ R (a point), a (1) cell is an
interval (a, b) ⊂ R.

.

.

.

2 suppose (i1, . . . , in) cells are already defined. Then an
(i1, . . . , in, 0) cell is the graph Γ(f) of a function f ∈ C(X),
where X is an (i1, . . . , in) cell. As (i1, . . . , in, 1) cell is a set
(f, g)X , where X is an (i1, . . . , in) cell and
f, g ∈ C1(X), f < g.
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(i1, . . . , in) cell is a definable subset of Rn obtained by induction on n
as follows:

.

.
.

1 a (0) cell is a one-element set {r} ⊂ R (a point), a (1) cell is an
interval (a, b) ⊂ R.

.

.

.

2 suppose (i1, . . . , in) cells are already defined. Then an
(i1, . . . , in, 0) cell is the graph Γ(f) of a function f ∈ C(X),
where X is an (i1, . . . , in) cell. As (i1, . . . , in, 1) cell is a set
(f, g)X , where X is an (i1, . . . , in) cell and
f, g ∈ C1(X), f < g.

A cell in Rn is an (i1, . . . , in) cell, for some sequence (i1, . . . , in).
The (1, . . . , 1) cells are exactly the cells which are open in Rn.
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Cell decomposition theorem

.

Definition

.

.

.

. ..

.

.

A decomposition of Rn is a special kind of partition of Rn into finitely
many cells. The definition is by induction on n.

.

.
.

1 A decomposition of R is a collection

{(−∞, a1), (a1, a2), . . . , (ak, ∞), {a1}, . . . , {ak}},

where a1 < · · · < ak are points in R.

.

.

.

2 A a finite partition of Rn+1 into cells A such that the set of
projections π(A) is a decomposition of Rn, where
π : Rn+1 → Rn, π(x1, . . . , xn, xn+1) = (x1, . . . , xn).

.

.

.

3 A decomposition D of Rn is said to partition a set S ⊂ Rn if each
cell in D is either part of S or disjoint from S.
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Cell decomposition theorem

.

Theorem (Cell decomposition theorem)

.

.

.

. ..

.

.

.

.
.

1 Given any definable sets A1, . . . , Ak ⊂ Rn, there exists a
decomposition of Rn partitioning each of A1, . . . , Ak.

.

.

.

2 For each definable function f : A → R, A ⊂ Rn, there exists a
decomposition D of Rn partitioning A such that the restriction
f |B : B → R to each cell B ∈ D with B ⊂ A is continuous.
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.

.
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. ..

.

.

.

.
.

1 Given any definable sets A1, . . . , Ak ⊂ Rn, there exists a
decomposition of Rn partitioning each of A1, . . . , Ak.

.

.
.

2 For each definable function f : A → R, A ⊂ Rn, there exists a
decomposition D of Rn partitioning A such that the restriction
f |B : B → R to each cell B ∈ D with B ⊂ A is continuous.

A set Y ⊂ Rn+1 is finite over Rn if for each x ∈ Rn, the fiber
Yx = {r ∈ R|(x, r) ∈ Y } is finite. We call Y uniformly finite over Rn

if there exists N ∈ N such that |Yx| ≤ N for all x ∈ Rn.

.

Theorem (Uniform finiteness)

.

.

.

. ..

.

.

Suppose that a definable subset A of Rn+1 is finite over Rn. Then Y is
uniformly finite.
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Cr Cell decomposition theorem

Let N = (R, +, ·, <, . . . ) be an o-minimal expansion of a real closed
field.
Let X ⊂ Rn be a definable open set and r a positive integer. A definable
map f : X → Rn is a definable Cr map if f is of class Cr.
A definable map f : A → Rn, where A ⊂ Rm is not necessarily open, is
a definable Cr map if there exist a definable open set U ⊂ Rm

containing A and a definable Cr map F : U → Rn such that f = F |A.
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A definable map f : A → Rn, where A ⊂ Rm is not necessarily open, is
a definable Cr map if there exist a definable open set U ⊂ Rm

containing A and a definable Cr map F : U → Rn such that f = F |A.
we put

Cr(X) = {f : X → R|f is definable and of class Cr},

Cr
1(X) = Cr(X) ∪ {+∞, −∞},

where we regard +∞ and −∞ as constant functions on X.
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Cr Cell decomposition theorem

Let (i1, . . . , in) be a sequence of zeros and ones of length n. An
(i1, . . . , in) Cr cell is a definable subset of Rn obtained by induction on
n as follows:

.

.
.

1 a (0) Cr cell is a one-element set {r} ⊂ R (a point), a (1) Cr cell
is an interval (a, b) ⊂ R.

.

.

.

2 suppose (i1, . . . , in) cells are already defined. Then an
(i1, . . . , in, 0) Cr cell is the graph Γ(f) of a function f ∈ Cr(X),
where X is an (i1, . . . , in) Cr cell. As (i1, . . . , in, 1) Cr cell is a
set (f, g)X , where X is an (i1, . . . , in) Cr cell and
f, g ∈ Cr

1(X), f < g.
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A decomposition of Rn is a special kind of partition of Rn into finitely
many Cr cells. The definition is by induction on n.
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Cr Cell decomposition theorem

.

Theorem (Cr Cell decomposition theorem)

.

.

.

. ..

.

.

.

.
.

1 Given any definable sets A1, . . . , Ak ⊂ Rn, there exists a
decomposition of Rn partitioning each of A1, . . . , Ak.

.

.

.

2 For each definable function f : A → R, A ⊂ Rn, there exists a
decomposition D of Rn partitioning A such that the restriction
f |B : B → R to each Cr cell B ∈ D with B ⊂ A is of class Cr.
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Triangulation

Let N = (R, +, ·, <, . . . ) be an o-minimal expansion of a real closed
field.
An affine subspace of Rn of dimension d is a translate L + a of a linear
subspace L of Rn of dimension d.
A tuple a0, . . . , ak of points in Rn is affine independent if the smallest
affine subspace containing a0, . . . , ak has dimension k.
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An affine independent tuple of points a0, . . . ak of Rn, we call
(a0, . . . , ak) = {∑k

i=1 tiai| all ti > 0,
∑k
i=1 ti = 1} a k-simplex.
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subspace L of Rn of dimension d.
A tuple a0, . . . , ak of points in Rn is affine independent if the smallest
affine subspace containing a0, . . . , ak has dimension k.
An affine independent tuple of points a0, . . . ak of Rn, we call
(a0, . . . , ak) = {∑k

i=1 tiai| all ti > 0,
∑k
i=1 ti = 1} a k-simplex.

A complex K in Rn is a finite collection of simplexes in Rn such that for
all σ1, σ2 ∈ K, either σ1 ∩ σ2 = ∅, or σ1 ∩ σ2 = τ for some common
face τ of σ1 and σ2. Here σ1 (resp. σ2, τ ) denotes the closure of σ1

(resp. σ2, τ ) in Rn. Notice that τ is not required to belong to K. A
complex is called closed if it contains all its faces of each simplex. Note
that a complex K in Rn is closed if and only if |K| is closed in Rn.
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Triangulation

.

Definition

.

.

.

. ..

.

.

Let A ⊂ Rn be a definable set. A definable triangulation in Rn of A is a
pair (ψ, K) consisting of a complex K in Rn and a definable
homeomorphism ψ : A → |K|. The triangulation is said to be compatible
with a definable subset B ⊂ A if B is a union of some elements of
ψ`1(K).
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Triangulation

.

Definition

.

.

.

. ..

.

.

Let A ⊂ Rn be a definable set. A definable triangulation in Rn of A is a
pair (ψ, K) consisting of a complex K in Rn and a definable
homeomorphism ψ : A → |K|. The triangulation is said to be compatible
with a definable subset B ⊂ A if B is a union of some elements of
ψ`1(K).

.

Theorem (Triangulation theorem)

.

.

.

. ..

.

.

Let S ⊂ Rn be a definable set and S1, . . . Sk definable subsets of S.
Then S has a triangulation in Rn which is compatible with S1, . . . , Sk.
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Piecewise trivialization theorem

Let N = (R, +, ·, <, . . . ) be an o-minimal expansion of a real closed
field.

.

Definition

.

.

.

. ..

.

.

Let A ⊂ Rm, S ⊂ Rn be definable sets, and let f : S → A be a
definable continuous map. We say that f is definably trivial if there exist a
definable set F ⊂ RN for some N ∈ N, and a definable continuous map
h : S → F such that (f, h) : S → A × F is a definable
homeomorphism. In this case, each fiber f`1(a) of f over a is definably
homeomorphic to F . For a definable subset B ⊂ A, we call f definably
trivial over B if the restriction f |f`1(B) : f`1(B) → B is definably
trivial.
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Piecewise trivialization theorem

Let N = (R, +, ·, <, . . . ) be an o-minimal expansion of a real closed
field.

.

Definition

.

.

.

. ..

.

.

Let A ⊂ Rm, S ⊂ Rn be definable sets, and let f : S → A be a
definable continuous map. We say that f is definably trivial if there exist a
definable set F ⊂ RN for some N ∈ N, and a definable continuous map
h : S → F such that (f, h) : S → A × F is a definable
homeomorphism. In this case, each fiber f`1(a) of f over a is definably
homeomorphic to F . For a definable subset B ⊂ A, we call f definably
trivial over B if the restriction f |f`1(B) : f`1(B) → B is definably
trivial.

.

Theorem (Piecewise trivialization theorem)

.

.

.

. ..

.

.

Let f : S → A be a definable continuous map. Then there exists a finite
partition A = A1 ∪ · · · ∪ Am of A into definable sets Ai such that f is
definably trivial over each Ai.
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Definable quotient

Let N = (R, +, ·, <, . . . ) be an o-minimal expansion of a real closed
field.

.

Definition

.

.

.

. ..

.

.

Let E ⊂ X × X be a definable equivalence relation on a definable set
X ⊂ Rn. A definably proper quotient of X by E is a pair (p, Y )
consisting of a definable set Y ⊂ Rm and a definable continuous
surjective map p : X → Y such that

.

.

.

1 E = Ep, that is (x1, x2) ∈ E ⇔ p(x1) = p(x2) for all
x1, x2 ∈ X.

.

.

.

2 For each definable set K ⊂ Y , if p`1(K) is closed and bounded in
Rn , then K is closed and bounded in Rm.
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Definable quotient

.

Definition

.

.

.

. ..

.

.

Let E be a definable equivalence relation on a definable set X and
pr1 : X × X → X, pr2 : X × X → X the restrictions of the two
projections X × X → X. We call E definably proper over X if pr1 is a
definably proper map.
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Definable quotient

.

Theorem

.

.

.

. ..

.

.

Suppose the definable equivalence relation E on the definable set X is
definably proper over X. Then X/E exists as a definably proper quotient
of X.
Namely X/E is a definable set and the projection p : X → X/E is a
definably proper definable surjective continuous map.
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Definable quotient

.

Theorem

.

.

.

. ..

.

.

Suppose the definable equivalence relation E on the definable set X is
definably proper over X. Then X/E exists as a definably proper quotient
of X.
Namely X/E is a definable set and the projection p : X → X/E is a
definably proper definable surjective continuous map.

.

Theorem

.

.

.

. ..

. .

If X ⊂ Rn is closed and bounded and E ⊂ X × X is a closed definable
equivalence relation, then X/E exists as a definably proper quotient of X.
Namely X/E is a definable set and the projection p : X → X/E is a
definably proper definable surjective continuous map.
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Definable quotient

A definable subset X ⊂ Rn is definably compact if for any definable map
f : (a, b) → X, there exist the limits limx!a+0 f(x), limx!b`0 f(x)
in X.

.

Theorem (Peterzil and Steinhorn 1999)

.

.

.

. ..

.

.

For a definable subset of Rn, it is definably compact if and only if it is
closed and bounded.

A definable set G ⊂ Rn is a definable group if G is a group and the
group operations G × G → G, G → G are definable and continuous.

.

Corollary

.

.

.

. ..

.

.

If G is a definably compact group and G acts a definable set X definably
and continuously, then the orbit space X/G is a definable set and the
orbit map p : X → X/G is a definably proper definable surjective
continuous map.
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